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ABSTRACT   The North American Multi-Model Ensemble (NMME) is a multi-model 

seasonal forecasting system consisting of models from combined US modelling centres. The NMME 

is expected to generate better rainfall prediction than a single model. However, the NMME forecasts 

are underdispersive or overdispersive, and calibration is needed to produce more accurate forecasting. 

This research examined the monthly rainfall data in Surabaya generated by nine NMME models and 

further calibrated them with bayesian model averaging (BMA). The purpose of this research was to 

assess the performance of the calibration results using the best four models and the full ensemble. 

The four models are CanCM3, CanCM4, CCSM3, and CCSM4, which were selected based on their 

skills. Both calibration results were evaluated using the continuous range probability score (CRPS) 

and the percentage of captured observations. The calibration with four models produced an average 

CRPS of 6.27 with 88.16% coverage, while with nine models an average CRPS of 5.23 with 92.11% 

coverage was obtained. This result suggests using the full ensemble to generate more accurate 

probabilistic forecasts.  
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1. INTRODUCTION 

 

The North American Multi-Model 

Ensemble (NMME) is a multi-model seasonal 

forecasting system consisting of coupled 

models from US modelling centres, including 

the NOAA National Centers for 

Environmental Prediction (NOAA/NCEP), the 

Center for Ocean-Land-Atmosphere Studies 

(COLA), the NOAA’s Geophysical Fluid 

Dynamics Laboratory (NOAA/GFDL), the 

National Aeronautics and Space 

Administration/Global Modeling and 

Assimilation Office (NASA/GMAO), and 

Canadian modelling centres (Kirtman et al., 

2014). Becker et al. (2014) examined the 

NMME’s skill and verified it against 

observations globally. They found that, for the 

precipitation rate and sea surface temperature, 

the NMME’s skill is higher than that of any 

single model, although there may be many 

regional and seasonal variations. The NMME 

usually makes better predictions than most, if 

not all, individual models. However, both the 

potential predictability and the real forecast 

skill vary depending on the geographical 

region and season.  

 

The NMME involves two major 

processes. The first focuses on changing the 

seasonal and annual time scales into a monthly 
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scale. The second defines the most appropriate 

forecast parameters. Forecasting is performed 

every mid-month. Kirtman et al. (2014) 

explained that the multi-model approach using 

the NMME is more accurate than single-model 

forecasting. The NMME has been used 

extensively in previous research to verify 

forecasting results from the average monthly 

rainfall (Kuswanto, 2010; Wang et al., 2016), 

regional temperatures at 2 m above sea level 

(Becker et al., 2014), the sea surface 

temperature (Barnston et al., 2011; Kuswanto 

& Sari, 2013), seasonal rainfall (Ma et al., 

2015), and seasonal droughts (Yuan & Wood, 

2013). 

 

A lot of researches showed that ensemble 

prediction systems have bias and hence, they 

have to be post-processed statistically to 

generate calibrated predictive distributions 

(Hamill & Colucci, 1997). Raftery et al. (2005) 

introduced Bayesian Model Averaging (BMA) 

with more recent extensions to quantitative 

precipitation (Sloughter et al., 2010), wind 

direction (Bao et al., 2013), and wind speed 

(Hamill & Colucci, 1997). The NMME’s skill 

has never been investigated. This research has 

several goals. The first is to show that 

the NMME has bias. The second is to verify 

that BMA can improve the reliability and 

validity of the NMME. The last is to assess the 

performance of calibration results using the 

best four models and the full ensemble 

evaluated using the continuous range 

probability score (CRPS) and the percentage of 

captured observations in Surabaya. 

 

 

2. LITERATURE REVIEW 

 

2.1 North American Multi-Model 

Ensemble (NMME) 

 

The NMME is a forecasting system 

consisting of coupled models from US and 

Canadian modelling centres. The NMME was 

launched in the United States (Kirtman et al., 

2014) with real-time experimental operational 

forecasts from the NOAA or the NCEP. The 

multi-model ensemble approach has been 

shown to produce better prediction quality on 

average than any single model of the ensemble, 

motivating the NMME’s undertaking (Doblas-

Rayes et al., 2005; Gneiting et al., 2005; 

Hagedorn et al., 2004; Palmer, 2001; Smith et 

al., 2013). The models included in the NMME 

are CMC1-CanCM3 and CMC2-CanCM4 

from CanSIPS, COLA-RSMAS-CCSM3 and 

COLA-RSMAS-CCSM4 from COLA, GFDL-

CM2p1-aer04 from GFDL, ECHAM4p5-

Anomaly and ECHAM4p5-DirectCoupled 

from IRI, and CFSv1 and CFSv2 from NCEP. 

 

2.2 Bayesian Model Averaging (BMA) 

 

Ensembles of numerical weather 

prediction models have been developed, in 

which multiple estimates of the current state of 

the atmosphere are used to generate 

probabilistic forecasts for future weather 

events. However, ensemble systems are 

uncalibrated and biased and thus need to be 

post-processed statistically, for which BMA is 

the preferred method. BMA was introduced by 

Raftery et al. (2005). The basic idea is that, for 

any given forecast ensemble, there is a best 

model or member, but we do not know which 

it is. In BMA, the overall forecast probability 

density function (pdf) is a weighted average of 

the forecast pdfs based on each of the 

individual forecasts. The weights are the 

estimated posterior model probabilities and 

reflect the models’ forecast skill. The forecast 

kf   is then associated with a conditional pdf 

 |
k k

g y f , which can be interpreted as the 

conditional pdf of y  conditional on kf , given 

that kf   is the best forecast in the ensemble. 

The BMA predictive model is:

                                      

                                        1 1

1

| , , , |
K

K k k k

k

p y f f f w g y f


                                       (1)    
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where kf  is an ensemble forecast from K  

models. kw  is the posterior probability of 

forecast k  being the best one. The kw ’s are 

probabilities, so they are non-negative and add 

up to 1.  |k kg y f  is the gamma pdf with mean 

k k k    and standard deviation k k k  

, where k  is the shape parameter and k  is the 

scale parameter. Thus,  |k kg y f  can be 

written as follows:

 

                                      
 

11
| exp

ak

k k k

k k k

y
g y f y

a 


 

  
  

                                       (2) 

 

2.3 Continuous Range Probability Score 

(CRPS) 

 

The calibrated ensemble generates 

estimated intervals in pdf form. The CRPS is a 

much-used measure of performance for 

probabilistic forecasts (Hersbach, 2000). It is 

derived from a quadratic measure of the 

difference between the forecast cumulative 

distribution function (cdf) and the empirical 

cdf of the observation. The formula of the 

CRPS can be written as follows:

 

 

                                    
2

0

1

1
( ) ( )

n
f

i if
i x

CRPS F x F x dx
n



 

                                        (3)                                                     

 

where ( )f

iF x  is the cdf from the forecast in the i -th period, 0 ( )iF x  is the cdf from the observations 

in the i -th period, and 
fn  is the number of forecasts.

 

3. DATA AND METHODOLOGY 

 

The data set used in this paper contains 

the monthly series of precipitation predictions 

from each individual model, which were 

downloaded from the official website of the 

NMME and the official website of the 

European Centre for Medium Range Weather 

Forecast (ECMWF). The data consist of 

monthly rainfall forecast results and the 

observed total rainfall in Juanda Surabaya. The 

two data sets have the same time periods, from 

2003 to 2010. There are nine ensemble 

members, which are analysed as follows:  

 

1. Evaluating the forecast model in the 

NMME data set against the real-time 

observations in the ECMWF data set 

using Root Mean Square Error 

(RMSE).  

2. Calibrating the forecast models in the 

NMME data set with pre-process 

result data using the BMA approach. 

The calibration process using BMA 

will be examined for the window time 

( m ) 12m  . The window time is the 

amount of data used to estimate the 

BMA parameters. The calibration is 

carried out in the following steps:  

 

 Starting a regression between 

forecasts as a predictor with the 

observation (dependent variable) 

using as many data as in the m-

period before the calibrated 

period to obtain bias correction.  

 Based on equation (3), estimating 

the kw  for each ensemble 

member and variance with the 

expectation maximization 
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algorithm. kw  is the posterior 

probability of forecast k  being 

the best one. 

 After all the parameters have 

been obtained, then the calibrated 

forecast can be obtained.  

3. Evaluating the model’s reliability 

using the CRPS.  

 

 

4. RESULT 

 

4.1 Evaluation of the Rainfall Forecast 

Model 

 

There are nine models to be calibrated 

in this research. However, they must be 

evaluated first to determine whether the 

individual models are reliable or not. In this 

research, the performance of the ensemble 

model is assessed using the 
2R  to determine 

the accuracy of the forecast in relation to the 

observations. In addition, the RMSE is used to 

evaluate the goodness of the model. Table 1 

presents the performance of the monthly 

precipitation in individual models based on the 
2R  and RMSE.

 

 

Table 1: Performance of monthly precipitation individual models. 

 

Ensemble Member 2R  RMSE 

CMC1-CanCM3 53.00% 6.95 

CMC2-CanCM4 49.70% 7.72 

COLA-RSMAS-CCSM3 37.20% 7.04 

COLA-RSMAS-CCSM4 51.00% 6.83 

GFDL-CM2p1-aer04 47.90% 8.27 

ECHAM4p5-Anomaly 26.60% 4.66 

ECHAM4p5-DirectCoupled 32.00% 5.28 

CFSv1 5.90% 5.06 

CFSv2 31.60% 2.78 

 

 

Based on the values in Table 1, the best 

ensemble members are determined by 

comparing the 
2R value of each ensemble 

member with the observation data. The best are 

CMC1-CanCM3, CMC2-CanCM4, COLA-

RSMAS-CCSM3, and COLA-RSMAS-

CCSM3. CFSv2 has the smallest RMSE. The 

best model is selected using the 
2R  due to the 

fact that the basic idea of BMA is to capture 

the uncertainty. The 
2R  is used to explain how 

much variability in the observations that can be 

explained by the ensemble forecasting from 

each model. 

 

 

 

4.2 Calibration of Rainfall Forecasts 

 

Based on the previous sub-section, the 

result of ensemble forecasting is still 

unreliable. Therefore, a post-processing 

method is needed to calibrate the ensemble 

model to produce better forecasts. The BMA 

reduces the mean bias value towards the 

observed value. In addition, it adjusts the 

variance to obtain a calibrated forecasting 

value. The first step is to determine the 

estimates of the parameter and to obtain the 

calibrated mean (  ) and variance ( 2 ). Table 

2 shows the BMA parameter along with the 

mean and standard deviation values for the 

period December 2010 for the lead time of one 

month.
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Table 2: BMA Parameters at -7o South and 113o East. 

 

Model         w    -Calibrated 2  -Calibrated 

Best 

Four 

Models 

CMC1-CanCM3 0.0294884 7.89E-01 0.0312889 0.0050796 

CMC2-CanCM4 0.0314713 2.11E-01 

COLA-RSMAS-CCSM4 0.0255515 1.90E-06 

GFDL-CM2p1-aer04 0.0280928 1.11E-11 

      

Full 

Model 
CMC1-CanCM3 0.0269645 1.72E-04 0.0277121 0.033588 

CMC2-CanCM4 0.0277123 1.00E+00 

COLA-RSMAS-CCSM3 0.0254797 3.58E-10 

COLA-RSMAS-CCSM4 0.0264381 1.46E-17 

GFDL-CM2p1-aer04 0.027008 2.22E-14 

ECHAM4p5-Anomaly 0.0256025 1.06E-12 

ECHAM4p5-DirectCoupled 0.0253882 5.51E-14 

CFSv1 0.0240376 8.78E-09 

CFSv2 0.0254054 6.84E-12 

 

 

Based on Table 2, CMC1-CanCM3 has 

the largest weight of the best four models, 

7.89E-01. CMC2-CanCM4, COLA-RSMAS-

CCSM4, and GFDL-CM2p1-aer04 have 

weights of 0.211, 0.0000019, and 1.11E-11. 

This means that CMC1-CanCM3 makes a 

greater contribution to BMA, because its 

weight is larger than the others. On the 

contrary, COLA-RSMAS-CCSM4 and GFDL-

CM2p1-aer04 do not contribute to BMA, 

because their weight is very small, while 

CMC2-CanCM4 has the largest weight in the 

full model and tends to be close to one. The 

larger weight indicates a greater contribution to 

BMA.

 

 

 
(a)                                                                        (b) 

 

Figure 1: BMA predictive pdf: (a) best four models; (b) full model. 

 

Figure 1 shows the BMA forecasting 

results using the best four models and the full 

model. The orange vertical line indicates the 

observation data, and the black vertical line is 

the 95% confidence interval from the 

calibrated forecasting result. Based on Figure 

1, BMA produces a reliable interval. This 

shows that the forecasting results of the best 

four models and the full ensemble are within 

the 95% confidence interval of the calibrated 

forecasting result. In addition, the forecasting 

interval is narrow, meaning that the forecasting 



 

 

Malaysian Journal of Science 38 (Special Issue 2): 113- 119 (2019) 
 

THE INTERNATIONAL SEMINAR ON MATHEMATICS IN INDUSTRY (ISMI)  

AND THE INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED STATISTICS (ICTAS) 

ISMI-ICTAS18 [4-6 SEPTEMBER 2018] 

 
 

118 

 

precision is better. The full model’s pdf looks 

wider than that of the four models. This further 

shows the advantage of BMA, which can 

reduce underdispersiveness by attempting to 

adjust the variance, still covering the value of 

the observations. 

 

4.3 CRPS Mean Value and Percentage of 

Captured Observations for Calibrated 

Forecasts using BMA 

 

The purpose of the model evaluation is to 

determine which calibration method can 

provide better forecasting results, regarding 

both accuracy and density. The evaluation 

indicator uses the CRPS to compare the cdf 

between forecasting results and observation 

data. In addition, the evaluation of the 

calibrated forecast is assessed using the 

percentage of the captured observations. The 

CRPS and percentage of captured observations 

are shown in Table 3.

 

 

Table 3: CRPS Mean Value and Percentage of Captured Observations. 

 

 CRPS Percentage of Captured Observations 

Best Four Models 6.27 88.16% 

Full Model 5.23 92.11% 

 

Table 3 shows that the full model has a 

smaller CRPS than the best four models. This 

indicates that the full model’s forecasting 

results will tend to have better reliability and 

density and be closer to the observation values. 

In addition, the percentage of captured 

observations by the interval calibrated full 

model is higher than that of the best four 

models.  

 

 

5. CONCLUSION 

 

Based on the analysis, it can be 

concluded that the accuracy model of the best 

four models produces an average CRPS of 6.27 

with 88.16% coverage, while with nine models 

an average CRPS of 5.23 with 92.11% 

coverage is obtained. This result suggests 

using all the ensemble members in order to 

generate more accurate probabilistic forecasts.  
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