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ABSTRACT In this paper, we use a conservative front-tracking method for 2D Euler system to do interface  

simulation. In this method, the  movement of fluid interfaces is locally described by 1D Partial Differential Equation 

(PDE's) derived from the Euler system, and tracking is realized by numerically solving these 1D PDE's in a 

conservative fashion. We use this method to simulate the Richtmyer-Meshkov instability. Our numerical results are 

compared with the nonlinear theory developed by Zhang and Sohn (1997) and seem to agree  both qualitatively and 

quantitatively. 
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                 INTRODUCTION 

Interfacial instability is an important issue in the 

research of fluid dynamics nowadays, which attracts 

numerous attention from physical experiments to 

numerical simulations. Induced by some physical 

mechanism, the initially small amplitude 

perturbations of a fluid interface is eventually grow 

into big amplitude perturbations. The physical 

mechanism that induces the instability can be shock 

passing, which causes Richtmyer-Meshkov instability 

(RM-instability). This instability was first 

theoretically studied by Richtmyer in 1960
 

(Richtmyer R. D., 1960) and experimentally verified 

by (Meshkov E. E., 1970). The study of interfacial 

instability has a wide application in sciences and 

engineering, and the problems that involves to 

interfacial instabilities are under water explosions, 

droplet depositions, inertial confinement fusion 

(ICF), natural phenomena like supernova explosions, 

etc. 

 

Since the exact solutions to the governing equations 

for interfacial instability problems, either Euler or 

Navier-Stokes systems, compressible or 

incompressible, are hard to find, the results obtained 

through theoretical study are very limited. Also 

experimental study of interfacial problems are 

usually difficult and very expensive, and are often not 

very accurate in details, especially in the late stages 

of the flows, due to the imperfectness of experimental 

conditions. Thus, numerical study of interfacial 

problems finds great attention and is expected to give 

clearer understanding of the problems. 

 

Two types of interfacial instability problems that 

receive much numerical as well as experimental 

attentions are the shock-bubble interaction and 

single-mode RM-instability. In a single-mode RM-

instability problem, a shock wave interacts with a 

sinusoidally perturbed interface between two 

different fluids in a shock tube. The interaction 

causes the interface into unstable and small 

perturbations of this interface grow into nonlinear 

structures having the forms of bubbles and spikes, 

(See Figure 1).  A spike is a portion of heavy fluid 

penetrating into light fluid, while a  bubble is a 

portion of light fluid penetrating into heavy fluid. An 

overall description on the development of RM-

instability can be found in literatures (Glimm J. et 

al.,1998; Holmes R. S. & Sharp D.H., 1995; Holmes 

R. S.  et al., 1999; Holmes R.S., 1994; Li X. L. & 

Zhang, 1997;  Zhang Q. & Sohn S-I., 1996; Zhang Q. 

& Sohn S-I., 1997; Zhang Q. & Sohn S-I., 1999).  

Furthermore,  a detailed review on the theoretical, 

experimental and numerical developments of RM-

instability is available in (Benjamin et al.,1993). 

However, a  main concern of the RM-instability is to 

find the agreement among the theoretical predictions, 

experiments and numerical simulations on the 

amplitude and amplitude growth rate.  

 

mailto:aman@cu.ac.bd


Malaysian Journal of Science 35 (1): 23 – 28 (2016) 
 

24 
 

 
Figure 1.  A typical interface evolution of the single-

mode RM-instability with tip of                  bubble br  

and tip spike sr . 

 

The fundamental quantities of interest for 

investigation of the RM-instability are the amplitude 

and amplitude growth rate of the perturbation on the 

interface. The amplitude )(ta  is defined as one-half 

of the vertical distance between the tips of spike and 

bubble, 

     )(
2

1
)( bs rrta              …   …   … (1.1) 

where sr  and br   are the positions of the spike and 

bubble tips, as shown in  Figure 1. The amplitude 

growth rate is defined as the derivative of the 

amplitude  )(ta  with respect to t , which turns out to 

be 

    )(
2

1
)( bs vvta              …   …   … (1.2) 

where sv  and  bv  are the velocities of the spike and 

bubble tips. 

 

Zhang and Sohn developed a quantitative nonlinear 

theory for the compressible RM-instability in both 

two and three dimensions 
[18-20]

. Their theoretical 

predictions was based on pade approximation and 

constructed the perturbation amplitude and amplitude 

growth rate. Their analytical predictions were also in 

good agreement with the experimental results as well 

as nonlinear numerical simulations. They also 

obtained distinct bubble and spike velocities, and the 

overall growth rate at the interface valid for both 

early and late times. Linear and nonlinear theory are 

also discussed in (Nishihara et al., 2010). 

 

In this paper, we use the conservative front-tracking 

method developed by Mao to numerically simulate 

(Benjamin R., et al.,1993) single-mode RM-

instability problems. For the single-mode RM-

instability problem, we compute the amplitudes and 

amplitude growth rates. In this work, the computed 

perturbation amplitudes and amplitude growth rates 

are compared with the nonlinear analytical results 

obtained by Zhang and Sohn
[18-20]

. However, our 

numerical results qualitatively in good agreement 

with the analytical nonlinear results. The paper is 

organized in the following way: In section 2, briefly 

describe Mao's conservative front-tracking method. 

Section 3, gives the  numerical example. Finally, 

section 4 gives the conclusions.  

 

 

NUMERICAL METHOD 

 

In this section, we are going to give a brief 

description of the mathematical formulation of Euler 

system, material interface for multifluid and the 

conservative front-tracking method that is to be used 

for the simulation. The method was designed for 

general 2D conservation laws and tracked both the 

shocks, contact discontinuities and material 

interfaces. 

 

Two-Dimensional Euler System of Fluid dynamics 

 

We thus consider the 2D hyperbolic conservation 

laws of the form: 

    0)()(  yxt ugufu    …  …   … (2.1) 

   
TEvuu ),,,(           …  …   …(2.2a) 

  
TupEuvuuuf ))(,,,()( 2     

                                           …  …   … (2.2b) 

  
TvpEvuvvug ))(,,,()( 2     

                                            …  …   …(2.2c) 

where   denotes the density, u  and v  are the 

particle velocities in the x- and y-directions, p  is the 

pressure and E  the total energy. The term u  is 

the x-component of momentum, and the term v  is 

the y-component of momentum. The total energy can 

be defined as, 

     )(
2

1 22 vuE       …  …   … (2.2d) 

where )(
2

1 22 vuE    is the kinetic energy and 

  represents the specific internal energy. Here we 

have four differential equations with five unknowns. 

To complete the model, we need one more equation 
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which is related to the fluid components of interest, 

and is assumed to satisfy the equation of state of the 

form 

      )1(p                …   …   … (2.2e) 

where   is the specific ratio of heats. We use Eqs. 

(2.2a)-(2.2c) with equation of state (2.2e) as 

governing equations for our computation. It is well 

known that the solution to (2.1) may develop 

discontinuities, shocks, contact discontinuities and 

slip lines, no matter how smoothly the initial and 

boundary conditions are proposed. 

 

Two-fluid Flows and Material Interfaces 

 

Here, we consider two-fluid flow in two space 

dimensions, i.e. a flow involves two different fluids 

which are separated by a well-defined interface, 

called material interface. Two fluid components will 

not be mixed with each other in the flow. Therefore, 

the  entire flow region can be viewed as constitution 

of two regions, in each of which flows only one fluid. 

The situation is shown in Figure 2. The two-fluid 

flow is the simplest case of multifluid flow, in which 

more than one fluids are involved and the different 

fluids are separated by well-defined interfaces. 

 

  
    

Figure 2. In two fluid flow, the fluid 1 and fluid 2 are 

separated by a well-defined material interface. 

 

The flow in each region is described by the Euler 

system (2.1) with the corresponding EOS of the fluid 

in the region. We assume that the two fluids are both 

of the ideal gases with the EOS's as 

     )1( 1p               …   …   … (2.3a) 

     )1( 2p              …   …   … (2.3b) 

where 1  and 2  are the ratios of specific heats of 

the individual components, respectively. The material 

interface that separates the two fluids is also a 

linearly degenerated discontinuity i.e. it coincides 

with the contact discontinuity and slip line and moves 

with the fluids. Therefore, the normal velocity and 

pressure of the flow are continuous across the 

interface, and the density, tangential velocity and 

ratio of specific heats in the EOS may jump. As we 

already mentioned, the material interfaces are very 

unstable in two-fluid flows; small perturbations on 

the interfaces will be greatly amplified by some 

physical mechanism. The physical mechanism that 

induces the instability can be shock passing, which 

causes Richtmyer-Meshkov instability, gravity, 

which causes Rayleigh-Taylor instability, or velocity 

shear, which causes Kelvin-Helmholtz instability. In 

this study, we are going to present the numerical 

simulations of  important example of interfacial 

instabilities, i.e. Benjamin's single-mode RM-

instability experiments. 

 

Conservative Front-Tracking Method 

 

In the last decade, Mao developed a front-tracking 

method for the 2D Euler system, (Mao De-kang, 

2000; Mao De-kang, 2007). Like all the front-

tracking methods, say (Glimm J. et al.,1998; Holmes 

R. S, 1995; Holmes R.S, 1994; Li X. L. &  Zhang Q., 

1997), it is almost free of numerical dissipation. 

However, the following two features distinguish it 

from the other front-tracking methods: 1) The 

discontinuity curves are tracked by enforcing the 

conservation properties of the Euler system rather 

than the propagation speeds obtained by solving 

Riemann problems on the curve. 2) The movement of 

discontinuity curves is locally described by 1D PDE's 

derived from the Euler system, and the tracking is 

realized by locally discretizing these 1D PDE's on 

Cartesian sub-grid. Designed in such a way, Mao's 

front-tracking method is much simpler than the other 

front-tracking methods, it runs on Cartesian grid and 

uses no adaptive grid. More important, it is 

conservative. The method has already been 

successfully implemented on various numerical 

experiments and shows its efficiency and 

effectiveness in 1D and 2D cases, see  (Mao De-

kang, 2000; Mao De-kang, 2007; Ullah M.A., 2011; 

Ullah M.A., Wenbin G & Mao De-kang, 2011; Ullah 

M.A. et al., 2010).   

 

NUMERICAL EXAMPLE 

 

 For our numerical simulation, we have consider the 

Benjamin, Besnard and Hass physical experiment 

(Benjamin R. et al., 1993). Initially, two gases are 

separated by a material interface. A planar shock 

wave, with Mach number of 1.2, is placed in the air 

at x= -5.5cm and propagates through the air from 
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right to left of the shock tube and collided with the 

sinusoidal interface with 6SF  and then interface 

starts to move. The rectangular domain is taken long 

enough in the horizontal direction so that there is no 

influence from the two ends on the measurements of 

the interfaces during the computational time. Flow 

through boundary conditions are imposed on the right 

and left, periodic boundary conditions are imposed 

on the top and bottom sides of the tube. The shock 

reflects and refracts when passing the interface and 

produces a reflected and transmitted shock, see in 

(Holmes R. S. ET AL, 1999).  The initial set-up is 

shown in Figure 3 and the parameters are taken from 

Benjamin's experiments which is shown in Table 1: 

 

 

 
Figure 3.  Initial set-up of the single-mode RM-

instability for air- 6SF . 

 

Table 1: Experimental parameters for  

               air- 6SF  case: 

Quantity Unit Symbol Value 

Perturbation 

wavelength 

cm   3.75 

Perturbation 

amplitude 

cm a(0-) 0.24 

Wave number cm
-1

 k 1.675 

ka(0-) g/l  0.4 

Initial density g/l 
air  0.95 

  
6SF  4.84 

Initial pressure bar p  0.8 

Shock strength Mach 

number 
M  1.2 

Ratio of specific 

heats 

 
air  1.4 

  
6SF  1.09 

 

 

 

 

 

 

 

QUALITATIVE AND QUANTITATIVE 

DISCUSSIONS 

 

In this section we present the qualitative and 

quantitative predictions of our numerical results for 

overall amplitude, amplitude growth rate and the 

growth rates of the spike and bubble, and compare 

the results with nonlinear theory predicted by Zhang 

and Sohn (Zhang Q. & Sohn S-I, 1997 ; Zhang Q. & 

Sohn S-I, 1996). 

 

Figure 4 shows the amplitudes and amplitude growth 

rates given by impulsive model, the numerical 

solution of linear theory, the nonlinear theory 

obtained by Zhang and Sohn, the numerical 

simulation with our conservative front-tracking 

method  and the experiments. The amplitude and 

amplitude growth rates are computed using (1.1) and 

(1.2), respectively. The data for the impulsive model, 

the linear theory, the nonlinear theory by Zhang and 

Sohn and the experiments are picked from (Zhang Q. 

& Sohn S-I, 1997). 

 

 In Figure 4, we compare our computed perturbation 

amplitude and amplitude growth rates with the 

nonlinear theory, nonlinear theory by Zhang and 

Sohn  (Zhang Q. & Sohn S-I, 1997) and Richtmyer's 

impulsive model for air- 6SF  case. Figure 4(a) shows 

the prediction of the amplitude, while figure 4(b) 

express the growth rates. In both figures our 

numerical solutions are qualitatively and 

quantitatively in good agreement with those of 

nonlinear theory. The similarity in structure of the 

two growth rates curves, ours and Zhang and Sohn's 

in Figure 4, indicated that compressibility and 

nonlinear effects is also qualitatively well captured in 

our simulation. 

 

The growth rate determined from the experimental 

data was 9.2 m/sec over the time period 310-750 

sec . Using the least square method, we compute 

the growth rate of our conservative front tracking 

method over the same  experimental period (310

sec -750 sec ). The computed average growth 

rate is 9.77 m/sec, which is 6.2% larger than the 

Benjamin's experimental prediction and 5%  larger 

than the nonlinear theory. So, it can be speculated 

that our computed growth rates with conservative 

front tracking method are quantitatively in good 

agreement with that of nonlinear theory. 
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(a) 

 
(b) 

 

Figure 4. Numerical simulations are compared with 

nonlinear theory by Zhang and Sohn, linear theory, 

impulsive model and experiments: (a) amplitude and 

(b) growth rate. 

 

Potential flow model describes the amplitude growth 

rate through the late-time, nonlinear regime by the 

spike and bubble velocity evolution. Layzer (1955) 

first studied single-mode potential flow model to 

compute the bubble velocity for Rayleigh-Taylor 

case. (Hecht et al, 1994) extended Layzer-type model 

and studied the bubble velocity for RM-instability 

corresponding to an Atwood number A=1, which 

shows the decay of bubble velocity. Their model was 

applied to two-dimensional single-mode bubble 

evolution as well as two-bubble competition. Zhang 

and Sohn also compared their nonlinear theory with 

that of potential model (Holmes R.S.,1994; Li X. L. 

& Zhang Q., 1997; Mao De-kang, 2000). 

 
(a) 

 
(b) 

 

Figure 5. Numerical simulation with our results 

compare with nonlinear solution by Zhang and Sohn, 

linear theory, impulsive model and experimental time 

(a) Bubble velocity and (b) Spike velocity. 

 

(Hecht et al, 1994) have developed a potential flow 

model of RM-instability for the bubble growth . The 

asymptotic bubble velocity can be defined as (2/3kt), 

where k  is the wave number of perturbation and t  is 

time. Here, we compared our spike and bubble 

growth with nonlinear theory. In Figure 5(a), our 

bubble velocity shows excellent agreement with that 

of nonlinear bubble growth rate. In figure 5(b), 

computed spike velocity is not as good as in bubble 

velocity. Although we have seen that our bubble 

growth rate  are in good agreement witdh nonlinear 

theory for early to late time, the spike growth rates 

are in good agreement with early time. This property 

has also been shown in (Zhang Q. & Sohn S-I., 

1997). So, the growth rate agreement between the 

nonlinear theory and the nonlinear numerical theory 

and the nonlinear numerical simulation for the bubble 

is better than that of the spike growth. 
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CONCLUSION 

 

We have numerically simulate Benjamin’s air-SF6 

experiment of RM-instability and compared our 

results with those of Zhang and Sohn’s analytical 

predictions with the perturbation amplitude and 

amplitude growth rate. With this comparison, we can 

predict that our simulations are also in good 

agreement with the nonlinear theory. This shows that 

our conservative front-tracking method is efficient 

and effective for simulations of material interface. 
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