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ABSTRACT  In this paper we present a deterministic and continuous model for one prey-two
predators population model based on the Lotka-Volterra model. The two predators are subjected to
constant effort of harvesting. We study analytically the necessary conditions of harvesting to ensure
existence of the equilibrium points and their stabilities. The methods used to analyse the stability are
lincarisation and Hurwitz stability test. The results show that there is an asymptotically stable equilibrium
point in positive octane for the model without constant effort of harvesting. We found that there is an
asymptotically stable equilibrium point in positive octane for the model with constant effort of harvesting.
The stable equilibrium point for the model with constant effort of harvesting is then related to profit
function which we found to have maximum profit. This means that the prey and predator populations can
live in coexistence and give maximum profit although the two predators are harvested with constant effort
of harvesting,

ABSTRAK Dalam kertas ini kita kemukakan suatu model berketentuan dan selanjar untuk suatu
model populasi satu mangsa — dua pemangsa berdasarkan model Lotka-Volterra. Kedua — dua pemangsa
adalah tertakluk kepada tuaian usaha malar. Kita mengkaji secara analitik syarat perlu bagi tuaian untuk
menjamin kewujudan titik keseimbangan dan kestabilannya. Kaedah yang digunakan untuk menganalisis
kestabilan adalah kaedah pelinearan dan ujian kestabilan Hurwitz. Keputusannya menunjukkan bahawa
wujud suatu titik keseimbangan yang stabil secara asimptot dalam oktan positif untuk model tanpa tuaian
usaha malar, Kita dapati bahawa wujud suatu titik keseimbangan yang stabil secara asimptot dalam cktan
positif untuki model dengan tuaian usaha malar. Titik keseimbangan yang stabil bagi model dengan tuaian
usaha malar ini kemudian dihubungkan dengan fungsi keuntungan dan didapati mempunyai keuntungan
maksimum. Ini bermakna bahawa populasi mangsa dan pemangsa dapat hidup bersama dan memberi
keuntungant maksimum walaupun kedua — dua pemangsa dituai dengan tuaian usaha malar.

(Prey-predator, Hurwitz Stability Test, harvesting, profit)

INTRODUCTION

A number of researchers have studied and
attempted to find more information on model
involving three or more compattments. A two
prey-one predator system based on Lotka-
Volterra model has been analysed by Takeuchi
and Adachi [1]. The result indicates that stable
coexistence of three species at equilibrium point

is possible only when the predator prefers the
dominant prey. If the predator prefers the
inferior prey, the prey inevitably becomes
extinct. A three-dimensional model that presents
a model of the prey population in two habitats
including the dynamics of the predator
population has been proposed and analysed by
Freedman [2]. The case of no harvesting is
analysed and a criterion for persistence is given,
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Ebenhoh [3] has studied one prey-two predator
models where the two predators compete for the
prey. Coexistence is possible if both one prey-
one predator boundary systems show predator
prey limit cycle. Invasion of the other predator
is then possible in both cases. If the parameter
combinations are changed to damp the limit
cycle, coexistence becomes impossible. Another
one prey-two predator model has been
considered by Cale and O’Neill [4]. The model
was simulated with selected initial values. The
selected initial values are to cover the region of
phase space and the result indicates that all
simulations are run to steady state.

Rinaldi and Mutatori [5] have studied one prey-
two predater model {prey, predator, and super-
predator). The analysis of the geometry shows
that the state of the system tends toward a stable
limit ¢cycle. In particular, for suitable values of
the parameters, the populations can periodically
appear during a fraction of a low frequency
limit cycle. A general model, including three-
dimensional ones where two predators compete
for a single prey, has been considered by Farkas
and Freedman [6]. An example of the model
" shows that the equilibrium point, which is in the
positive octane, is asymptotically stable for
suitable values of the parameters.

In this paper we present a deterministic,
continuous model for one prey-two predator
population based on Lotka-Volterra model. The
predators are subjected to constant effort of
harvesting. Existence of the equilibrium points
is investigated. The stable equilibrium point is
then related to the maximum profit function.

ONE PREY-TWO PREDATORS MODEL

Consider a model which involves three
populations, one prey and two predators, based
on Lotka-Volterra prey-predator model. In this
model, we assume that the two predators have
no interactions. They compete for a single prey.
The model is

x(a—bx—ay—ﬂz)
yl-cmey+ix) ¢
z(*f—gz+dr)

Il

x
y
F

Il

where x, y and z represent the number of the

prey, the first predator, and the second predator,
respectively, at time 1. Here a, b, ¢, e, f, g,
o, [, 8, and & are all positive parameters. This

model considers that in the absence of
predators, the number of prey grows following
logistic growth. In the absence of a prey
population, the numbers of the two predators
decrease exponentially and then tend to zero.
Such growth rate of predator population of
model (1) has been considered by Kuang and
Takeuchi [7] and Liu and Wang [8]. The authors
considéred the stability of two preys-one
predator model with diffusion.

The equilibrium points of prey-predator model
(1) are
Ei=(0,0,0), E2=(a/b,0,0),

P ag + ff 0 ad —bf
bg+ 85" kg +ps)

fae+ac af -bc

_{be+a{’be+a(’ ]

and
E5=(x",y",2")
where
o= aeg + acg + fef
beg + aly + fde ’

« _ alg+ pif —beg - ficd
T beg talg + Poe
R abe + aed — bef —af?,

beg +alg + [de

2

and

To study the local behavior of model (1), firstly
we discuss the stability of the equilibrium points
in the model by using linearisation method.
Secondly, we follow Hurwitz stability test to
investigate the stability of the equilibrium point
ES.

Now let us investigate the stability of model (1)
at equilibrium points E1, E2, E3 and E4. The
Jacobian matrix of model (1) takes the form

a-2bx-ay-fz —ox —-fx
J= Ly —c=2ep+{x 1]
o 0 - f—2gz+dk

2)

At equilibrium point £1, we have
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a 0 8
JI:O -C .
o 0 -f

From the Jacobjan matrix  we  have
det( Jl):acf>0, The eigenvalues of the

Jacobian matrix J, are x=d, #H==¢ and
f. Since the Jacobian matrix J, has

negatlve and p031t1ve eigenvalues, then the
equlhbrlum point E1 is an unstable saddle point.
At equilibsium point E2, we have

-a —aalb —aplb
Jy=1 0 =(bc+al)ib o
0 0 —(&f +ad)ib
From the Jacobian matrix we have
det(.J, ) = —abe + a Ybf +ad)/ b2, The
gigenvalues of the Jacobian matrix J, are
r=-a, rz:____a(;;bc’ and r3=a8;bf, If

a-bc<0  andad-bf <0, then  the
eigenvalues r, and r, are both negative. Then
the ecquilibrium point E2 is asymptotically
stable. While if al—bc>0 or ad-5bf>0,
then at least one of the eigenvalues #, or 1y is

positive. Then the equilibrium point is an
unstable saddle point.

At equilibrium point £3, we have

A3 BB C!
J=lo E 0],
F, 0 G
where
g blagvs) o alers)
3 b WDy = s
g+ 5 bg + 35
o Blag+f) . _(adg+pof —beg - fred
} bg+ 5 By = bg + 6 ’
3=§(a5—bf) ond G. = _8las=bf)
bg+ 85 : bg+ 76

&)

From the Jacobian tatrix we have
det (J,)= £,(4,G, - C,F,}> 0 . From (3) we see

that A4, <0, B, <0, (<0, F>0, and
G, < (. The eigenvalues of the Jacobian matrix
J, are
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h=E,
and _
L lre) fleaf -alns-cin)

2 2

From the conditions of element of the Jacobian
matrix J,, it follows that both the eigenvalues

r, and r, are either negative or conjugate

complex with negative real part. If
alg + B —beg - fed >0, then E, becomes

positive, thus 7, > 0. Therefore the equilibrium

point E3 is unstable. If
aCg +PLf —bcg —Ped < 0 then the equilibrium

point £3 is asymptotically stable.

At equilibrium point £4, we have

4, B, C,
J,=|Aa, E, 0],
0 0 G,
where
A, = b(ae+ac) _ a(ae+ac}
4 be+al T betal

__/)’(ae+ac) A _§(a§—bc)
Y betal T bevad ey
£ = e(a(—bc)
44;_—__!
be+ad

G, =[a&z+ac§—af¢'fbef].

and

be+ag

It i8 easy to see that
det (.L,): G, (A4E4 —B4A4). We can also see

in (4) that 4, <0, B, <0, C,<0, A, >0,
and E, <0. Then the eigenvalues under this
situation are #, = G, and

_ (44 + E4) . J(A4 + 154)2 —4 (4474 + Byhy)
2 2

From the conditions of elements of the Jacobian
matrix J,, we know that both the eigenvalues
r, and r, are cither negative or conjugate
complex with negative real part. If
ade+ocs—off —bef >0, then G, becomes
positive or, equivalently, # > 0. Therefore the
equilibrium  point E4 is unstable. If
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ae+0cd — off, —bef <0 then the equilibrium
point E4 is asymptotically stable.

Theorem 1

Let ES be the equilibrium point of model (1) in
the positive oclane. Then it is qualitatively
stable and an attractor trajectory.

Proof.  Substituting the equilibrium point E5
into (2) gives the Jacobian matrix J, as follows

B

5

E
0

w

5

oAl
O o

5
where
4 =_b(aeg+acg+ﬁef)
3 beg + adg + fdd '
Bs L - (aeg+acg+ﬂef)’
beg + alg + fled
B (aeg +oeg + Pef )
beg +olg + fed
as-% (agg + &f - beg = ped). )
beg +adg + fled
¢ \agg+ pef —cbg~ cf5)
beg + alg + fde ’
Fe = 6(a6'e+afc5—bef—a§f)
3 beg+alg+fie
g lade+acd — bef —alf)
beg racg +fse
Since the equilibrium point £3 is in the positive
octane, o the conditions
alg + Pef —beg — fed >0
and ade +acd —bef —agf >0
are satisfied. It follows, from (5), that 4, <0,
B, <0, C,<0, A >0, E, <0, F,>0, and
G, <0. Then the J acobian matrix together with
its properties satisfy all of the qualitative
stability conditions, Jeffries [9], ie., (1) 4 <0,
E <0, G,<0, (i) A4,#0, E#0, G =0,
(i) B,A;<0, CF <0, (iv) Bs0F; =0,
Cs0A5 =0, and (v)det (75) = (45E5Gs - BsAsGs
- C5E5F5) < 0. Further, we conclude that the
equilibrium point E5 is qualitatively stable. This
means that the equilibrium point ES5 is stable.

Cs=-

Eq=

and GS ==

e

We would also like to investigate the kind of
stability of the equilibrium point E3 using
Hurwitz stability test, see Jeffries [10] and
Willems [11]. The characteristic equation of the
Jacobian matrix J, is

flr)=r - (s + Es + Gy )r? + (AsEs + AsGs = Bshs
— C,Fy + EsGs)r — AsEsGs + BshsGs + C.EsF.

From the characteristic equation we have

— A EsGs + BsASG
Po = sEsCs + 85850 | 50,
+ CEsFs

AsEs + 4G5 — BsAs
n=| _ep s >0,
- CsF5 + E5Gs
2! =‘(A5 + E5 +Gs); py >0, and
2
oy — Py = AsBshs — A Es — 45 Gs
+ AsCsFy - 24:E5Gs - 4GS
4+ C3FyGs — EsGs” + Bsds Es
- ASES2 fESZGs PPy P> 0

{6)

From (6) we know that the Hurwitz stability test
is satisfied, so the equilibrium point E5 is an
attractor trajectory. It is an asymptotically stable
equilibrium point.

When the equilibrium point £5 is in the positive
octane, the equilibrium points E1, E2, E3, and
E4 may also exist, i.¢., none of the components
of E1, E2, E3, and E4 has negative value. If the
equilibrium points El, E2, E3, and E4 exist,
then it is impossible that they are stable
equilibrium points. The equilibrium points El
and E2 are both unstable saddle points whereas
the equilibrium points E3 and E4 are both not
attractor trajectory and not asymplotically stable
equilibrium points.

Example 1.
Consider the model (1) with parameters a = 2,

b =0.0001, o =0.003, c=0.035, e=02,
£=004, g=01, p=0004 (=000 and
& = 0.001 . The five equilibrium points and their
stabilities are given in Table 1.
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Table L. Equilibrium points and their stabilities

Equilibrium peint Eigenvalues Stability
T (0,0, 0} -0.0500, -0.0400, 2.0000 Unstable saddle point
&, | (20000,0,0) -2.0000, 39.9500, 19.9600 | Unstable saddle point
TE | (14297.1429,0,142.5714) -2.1004, -13.5864, 28.5443 | Unstable saddle point
T (15390.3846, 153.6538, 0) -2.0335,-30.2363, 15.3504 | Unstable saddle point
T (11778.5394,117.5353, 1 17.3853) | -2.1430, -11.1434, -23.1370 | Asymptotically stable

MODEL WITH CONSTANT EFFORTS OF
HARVESTING

We consider a constant effort of harvesting in
model (1) where the two predator populations
are subjected to constant effort of harvesting.
The rate of harvesting is proportional to the size
of the respective predator population. Here, we
assume that the two predators are economically
valuable and hence the predators are harvested.
Madel (1) becomes

_i’:x(a—bx—ay—ﬁz)
y=ylc-ey+&)-E,y ™
é:z(jf—gz+c5x)—Ezz

where £, and £, are constant efforts of
harvesting for the population y and ¢z
respectively. By letting  m=c+E  and
n=f+FE, , model (7} can be rewritten in the
form

i=x{a—bx—ay—pz)

p=y(-m-ey+x) ®)

z':=z(—nkgz+8x)
where m and » are also positive constants.

The equilibrium points of model (8) are,
namely, E,1=(0,0,0), E,2={a/5,0,0),

E,3- ag+[3n,0, ad—bn ,
bg+pd bg+pa
E,d= ae+am’a§—bm’0 ’

be+al  be+al
and Eﬁsz(xl’yl’zc)i

aeg + amg + fen

beg + alg + fde

where x, =

_ alg +Bn—bmg —Bmbd

© beg +ulg +pde

_ aed+omd--ben —onl

" beg+alg +pde

The Jacobian matrix of model (8) is
A C

H]

and

H

T X
T

B
E

J, = 0
0 G,

H

A , ®
F,

H?

where A4, =a-2bx-ay-Pz, By=-ax,
C,=-Bx, A,=Cy, E,=-m-2ey+ix,
F,=08z,and G, =—n—-2gz+0x.

Models (1) and (8) are mathematically similar,
so the analyses of stability of their equilibrium
points are similar. At the equilibrium point
E, 1, the eigenvalues of the Jacobian matrix J,

associated with this equilibrium point are
rn=a, r=-m, and r,=-n. Then the
equilibrium point E,1 is an unstable saddle
point.

If E >(al-bc)/b and E, >(ad-bf)/b,
then the equilibrium point £,2 s

asymptotically stable. If the equilibrium point
E,3 exists and model (8) satisfies the

conditions
ab-bf >0, alg+PpLf —bcg —Pecd>0,
(bg +P3) E, ~BL E, > alg +PLf ~beg e,
and 0 < E, <{a8—bf)/b, then the equilibrium
point E,3 is asymptotically stable. If the

conditions
al,—be>0, ade+acd—off —bef >0,
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- 08E, +(be-+ aG) E, > abe+acd —aff —bef , '
and Q<E < (aC_,—bc)/b are satisfied, then the

equilibrium point E,4 is asymptotically stable.
However, when the two predators are subjected
to constant effort of harvesting and the
equilibrium  points £,2, E,3, or E,4 are
stable, then at least one of the two predators will
become extinct.

Theorem 2.

Let E,5 be one of the equilibrium points of

model (8) which occurs in the positive oclane.
Then the equilibrium point E,5 is gualitatively
stable and is an attractor trajectory.

Proof. Substituting the equilibrium point £,5
into (9) gives the Jacobian matrix J,, as
follows

Ays Bys Cus
Jys=|Ays Eys 0
' Fys 0 Ghs

where
Ao = — b (aeg + amg + flen)
s beg +alg + fife
B2 (qeg + amg + fen)
3 beg + adg + fde ’
c =7ﬁ(aeg+amg +ﬂen)
H3 beg +agg + e ’ (10)
Ao = §(a§’g+ﬁ§n4bmg—mﬂ§)
5 beg + alg + foe ’
... Llagg+ fn—bmg - mfis)
Hs beg + alg + fée ’
Foe & (ade +ams —ben ~atn)
#s beg + aig + foe
and
g (a&: + amd — ben - a{n)
Gys =~ .

beg + alg + fde
From the Jacobian matrix we have

det (JHS): AHSEHSGHS ﬁBHSAHﬁGﬁi - CHSEHSFHS .

Since the equilibrium point £,5 is in the
positive octane, the conditions

alg +pin—bmg —mpd >0
and

ade + amb—ben—aln>0

are satisfied. These conditions are equivalent to
say, (EJ,, Ez)e R, where

R:{(Ey,Ez) \(bg + 58)E, - BSE,
<a§g+ﬂ4]f—bcgfﬂc5,—a65y
+(pe+ ozg’)EZ < ade + acd —bef
—atf,E, > 0,.E, >0
Under the above conditions, it follows from (10)
that A, <0, B, <0, C,<0, A, >0,
E, <0, F,,>0,and G,;<0. Therefore, the
Jacobian matrix J,, together with the
properties satisfy all of the qualitative stability
conditions, i.e.,
i) A, <0, E, <0, G, <0;
(i) 4,,#0, E,;;#0, G, #0;
(iil) By Ay, <0, CysFys <03
(iv) B,,0F,, =0, C,,04,,=0, and
(V) det (Jﬂs) = (AIISEHSGHS - BHSAHSGHS
—CHSEHSFHS) <0,

Furthermore we would like to investigate the
kind of stability of the equilibrium point E,5
using Hurwitz stability test. The characteristic
equation of the Jacobian matrix J,; evaluated

at the equilibrium point £, 5 is

f(’) = - (Aus tE,+ Gns) 74 (AysEys
+ Ay Gy — ByBys — CoysFys + EysGys)r
- AHSEHSGHS + BHiAﬁiGIIS + CHsEusFus .

Therefore, we have
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o = (= AusEnsGrs + BushysGys + CirsEnsFis)
P > 0,
p = (AysEps+ AgsGys —Bysdys —ChysFys
+EgsGyskh p >0,
pr = Ays + Eys + Gus) 1, >0, and
papy— Pa = AgsByshas — AH52EH5
- AH52GH5 + Ay Crslys
— 2Ay5EysGus — AysGus’
+CpsFysGys — EH:SGH52
+ BysBysEys — AysEys’ — Eys Gys;

Pt~ P> 0.
(11)

Frem (11), following the Hurwitz stability test
we conclude that the equilibrium point £, 5 is

an attractor trajectory and an asymptotically
stable point.

ANALYSIS OF MAXIMUM PROFIT

Now we would like to analyse the requirements
of total revenue, total cost, and maximum profit
at the equilibrium peoint £,5 in order to

maximise the profit. In others words, we want to
determine the values of efforts £ and E|

which give maximum profit associated with the
stable equilibrium point E,5.

Wec assume that the unit price of stocks y and z
are p, and p, respectively and the total cost is

proportional to both of the efforts £, and E,
with constant coefficients of exploitation c, and
c. respectively and fixed cost ¢,. Thus, the
total revenue can be written as a function of E,
and E, as

TR =TR(y,)+ TR(z,})= p,E,p. + p,E.z,

and the total cost written as
TC=c,+c E +cE . Such assumptions for

total revenue function and total cost function
have been considered by Clark [12].
The profit function # depends ony,, z,, E ,

and E . Then we obtain the following

expression for the profit finction or the nett
revenue,

=7 (y,,, Zys Ey,Ez)
= pyE},y, +p,E, 2, ¢y —cyEy -, E,
= (p),y* —cy)Ey + (pzz* —.':z)Ez ¢y
(12}

From the equilibrium point £, 5, we know that
both p, and z, depend on E, and E,. Thus,
we have

—beg — ped +agg + P —(bg + BO)E, + BLE,
- beg + adg + foe
=y —UE, +VE,,

Y

(13)

where
_ —bcg — fed + alg + Pif
beg + alg + Poe
_ {bg + 55)
beg + alg + fde

i

and
o B
beg+a§g+}5’§e’

~bef ~of +ade+acs—(be+al }E, +ad E,
beg + alg + foe
=z -WE +XE,,

Zy =

(14)
where
_ —hef —af0 + ade+ acd

beg + ale + fde

o lbeval)
 beg +alg + fe’

F4

and
ad

" begt alg + fde

Substituting y, and z, into profit function (12)

will make the profit function dependent only on
£ and &, . After simplification, the profit

function then becomes
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E(E)" EZ): (pyyl - C)')Ey - PyUEy2
+(p,V + P.X)EE,
+ (Pzzl ‘-Cz)Ez - PZWEZZ —C‘f
=y E, -pU Ey2

+(pJ’V+pZX)EyEz

+z, E, —p,W E-cy.

(15)
where Y2 = (pyy] '_Cy) and Z, = (pzzl _cz) are

assumed to be positive. Differentiate partially
the profit function (15) with respect to E_ and

E, to get the first and second derivatives, we

have
on
e v(p+pX)E -2V Ey
(‘;; =y +(py + P X)E, - 2p W E,,
2
: ”2 ==2p, U,
oE,
o'n & :
_or 9% _(p¥+pX)
3 0E,  OE,0E, (o, + p.)
and
&'n
EE—Z— = —sz W.
) ér Om .
B tting —— = = () and solving for E
YPUtne 5g " GE, g 1o 5

and E, we get the critical point

(E. .)= 2p.3, W+ 2 (P,V+PZX)
27 app, oW =¥+ pX)

2117),22 U+y, (pyV + sz) .
4p,p. uw -(pV +pX) )

We assume 4p,p; UV —\p V+pX2>0 to
yrz Y z

ensure  E >0 and E >0. Under this

2 2
assumption we find that E—nz—<0, iﬁT
Ok, OF,
or O'n dm &'
8E OE OE,0F, OEOE,

<0,

> (0 which are

and

evaluated at the critical point (E},E) Thus
we verify that the critical point (EJ,',EZ') gives
the maximum value for the profit function. This

means that if we choose a pair of efforts
(E;,Ez') which belongs to R, the efforts imply
the equilibrium point E,5 is asymptotically
stable and also maximise the profit.

Example 2.
Consider the model {8) with parameters = 2,

5=00001, o=0003, ¢=005 e=02
£=004, g=0.1, p=0.004, ¢=0.002, and
& =0.001. Then we have the equilibrium point
E,5=(x,,).,2.), where

x. =11778.529 +88.235L, + 235.294E,,

px = 117535+ 2.353E, —4.118F

and
24 = 117.3852041 + 0.882352941E), —7.647058825E

Further we have

r={(E,. E,)| 4.118E, - 2.353E,
<117.535,7.647E, —0.882E,, -
<117.385,E, >0, E, >0}
Take p, =1, p. =1,¢, =10, ¢, =0.5,and

¢, =0.5. Then we have profit function
w(E,,E,)=117.03529E, — 4.1 1764718,
+3.2352941E,E; +1 16.88529E,
—7.6470588E,7 - 10.

From the profit function we get the critical point
(E, ,E.)= (18.77404493,11.61393258)
which belongs to R and the maxinum profit is

(£, LE,")=1767361898.

After substituting
(EJ,',EZ') = (18.77404493,11.61393258)
into  the  above  equilibrium point
E, 5=(x,,y.2),we have
Eps= {16167.75281, 67.55730341,45.13820226)

with the Jacobian matrix

1616775281 -48.50325843 - 64.67101124
Jy =| 01351146068 -13.51146067 0 ,

00451382023 0 - 4.51382022
which has eigenvalues 7, =—12.9504 and
1y, =—3.3459 £1.3225i . From the eigenvalues
we conclude that the equilibrium point E,5 1
asymptotically stable.
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CONCLUSIONS

y the result indicates that when the
3 Hibri int ES5 occurs in the positive

“‘“'hbnun:hepo equilibrium  point  ES s
Ocmne;otically stable for suitable values of the
asymnl-:cters {Theorem 1). This means that the
part and the two predators  can live in
I(:cl;ﬂes;(istcnce. The three populations tend to the
stable equilibrium point E5 provided that the
ppulations are initially closed to the stable

equilibrium point £5.

In model (1)

©  In the model where thf: two predators are
! subjected to harvesting with constant effort, the
equilibrium point E,5 which occurs in the
positive octane is asymptotically stable,
Theorem 2. This means that the three
populations can live in coexistence although the
two predators are harvested provided that the
efforts of harvesting are controlled. If we take

the critical value of harvesting efforts (E E)

.

and choose suitable values of the parameters,
we find that the equilibrium point £,5 which

oceurs in the positive octane is asymptotically
stable and the profit is at the maximum level.
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