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ABSTRACT This paper discusses the application of Laplace Transform (LT) method in solving the
rate equations for the decomposition of benzocaine, which is a first order reaction and the decomposition
of acetyl phenyl salicylate (APS) which involves a competitive sequential four components reaction. The
mechanisms of these reactions are already known. The results obtained using LT method can be obtained
using any other methods. However we show that, for more complicated systems such as the hydrolysis
of APS, LT method is more simple and straight forward compared to other methods.

ABSTRAK Kertas kerja ini membincangkan kegunaan kaedah Laplace Transform untuk
menyelesaikan persamaan kadar bagi penguraian benzocaine, tindakbalas tertib satu dan penguraian
asetil fenil salisilat (APS) iaitu tindakbalas persaingan serta berurutan empat komponen. Mekanisma bagi
kedua-dua tindakbalas diketahui. Hasil yang diperolehi menggunakan LT boleh diperolehi dengan
kaedah lain. Bagaimanapun, seperti yang ditunjukkan, bagi sistem yang lebih rumit seperti hidrolisis
APS, kaedah LT adalah lebih mudah di bandingkan dengan kaedah lain.

(laplace transform, rate equation, hydrolysis, competitive first order)

INTRODUCTION determinant method and the Laplace Transform

method. The Euler method, the Runge-Kutta

Recently we have become interested in the method and the predictor-corrector method are
analysis of the rate constants for the drug examples of numerical methods of solving
decomposition reactions. There are a number of differential, equations [8]. This paper will
kinetic models [1] that are used to describe these discuss the Laplace Transform (LT) method in
reactions. These models vary in complexity and solving rate equations of two typical kinetic
the process involved ranging from simple “models relevant to the drug decomposition
decomposition of one reactant to form a product processes. In the LT method, the analytical
to a more complex system such as a four procedure can be both simplified and shortened
component closed system [2-7]. In order to considerably. The use of the LT method is quite
understand better the kinetic model, we need to simple yet powerful in the sense that it can be
know not just the concentration of reactant as a used to solve complex rate equations. This is
function of time but also the concentration of all due to the availability of computer softwares
products as a function of time. - such as MathCAD [9] and Maple [10] that can
give answers to the problems with just a few

From the kinetic model, differential rate mouse clicks or with just a one-line command.
equations can be written. The integrated form of The LT method can be applied only to linear
these rate equations can be obtained either differential equations [11]. Hence if there is a
analytically or numerically by using a number of product of concentration terms in the rate
available methods. Some examples of these equation, then the LT method can be obtained
methods are the separation of variables, the only if all other concentrations except only one
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can be kept constant under pseudo first order
conditions.

In the present work, we apply the LT method to
the hydrolysis of benzocaine, an anesthetic cream
and the hydrolysis of an aspirin pro-drug, acety!l
phenyl salicylate (APS). The decomposition
mechanisms of these drugs have been studied by
Irwin [1]. It has been observed that benzocaine
undergoes hydrolysis through a single step
process and APS undergoes hydrolysis through a
combination of competitive sequential steps.
These two case studies clearly bring out the
simplicity of applying LT methods in solving
complicated drug decompositions processes.

METHOD

Laplace Transform is an integral transform that
converts differentiation to integration.  The
definition of LT is

L) = Fs)= fexp(-st) ot (1)
0

After the expression is integrated, the variable t
(for time) is eliminated and the function F(s)
depends only on variable s. Therefore applying
Laplace Transform on a time dependent function
will result in an equation or expression that
depends on the s variable.

The key property of LT that makes it useful in
solving rate equations is:

L{f (0} = sLLA(O1- F(0) @)

where we have used prime to indicate the first
derivative and f(0) the value of the function at
t=0. This relationship shows that LT converts
differentiation into multiplication. Using this
propetty, the application of LT methods to solve
rate equations involve the following steps: '

(i) Write down the rate equations for the changes
in the concentration of all the species involved in
the proposed kinetic model.

(i) Apply the LT to convert the differential
equation to an algebraic equation in transformed
concentration variables.

(iii) Solve these equations to get the transformed
concentrations.

(iv) Apply the inverse LT to get the
concentration as a function of time.-
RESULTS AND DISCUSSION

We will exemplify the usefulness of the LT
method to drug decomposition processes by
making use of two different drug decomposition
processes, for which the experimental data is
already available. Asa first case, let us consider
the hydrolysis of benzocaine. Benzocaine is
found to undergo first order degradation to form
4-aminobenzoic acid as follows:

COOCH; g COOH ‘
A/©/ ST N/©/ + CpHOH
H, H, i

The kinetic model for this hydrolysis is:

A—l§—>B+C

where A is benzocaine, B is 4-aminobenzoic acid
and C is ethanol and k is the rate constant of this
reaction.
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The differential forms of the rate equations for
this reaction can be written as

A _ 3)
dt
B _ 14 @)
dt
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< _ )
dt

From equations (4) and (5), the time-dependent
concentration of B and C are the same. After
applying LT to equations (3) and (4) and using
equation (2), we get ’

sa— A4, =~ka (6)

sb—B, = ka @)
where we have used the notations g = L{4} and
b=L{By with A, and B, being the initial
concentrations of A and B. Now, solving for the
transformed concentrations a and b, we get

4,

— 8
N s+k ®
and
b =E‘1, with By =0 ©)
Ky

To get A, we need to apply the inverse Laplace
transformation viz, 4=L"{a} and B=["{}.
The inverse LT can either be obtained by
computer softwares like MathCad or it can be
obtained from the table of Laplace Transform.
By referring to Table 1, where we have listed a
few useful LT pairs, one can easily see that the
inverse LT corresponding to equation (8) is (third
entry in Table 1)

A(t) = A, exp(—kr) (10)

From equation (9), we can get
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kd,

b= 48))
s(s+k)

Using the corresponding inverse LT from Table
1 (fourth entry), we get

B(t) = 4,(1- exp(~kt)) (12)
Equations (10) and (12) when plotted, will give
exponentially decreasing concentration of A and
exponentially increasing concentration of B
respectively.

The whole procedure of solving the rate equation
can be compared to the use of logarithmic
transformations in solving the algebraic
equations involving products, as shown in Figure
1. Using logarithmic transformations, an
algebraic product is converted to a sum, and the
result of this sum then inverted back using
antilogarithm to get the final result. If the
logarithmic transformation can be compared to
the LT, then the antilogarithm is similar to the
inverse LT and the Table 1 can be compared to
the antilogarithm table. Just as one can get the
value of the algebraic products without the use of
logarithm, the differential rate equations (4) and
(5) can be solved to get (10) and (12) without the
use of LT. However, for more complicated rate
equations, the advantage of using LT over
directly solving the differential equations
becomes very apparent. This advantage can be
exemplified using a more complicated hydrolysis
of an aspirin prodrug, namely Acetyl phenyl
salicylate(APS). APS undergoes decomposition

to yield aspirin through a combination of

competitive sequential steps, as given below:
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H,0
: :CO-OCBHS
O-CO-CH;
Acetyl phenyl salicylate
A) H,0 - CH,0H
ky

L

Aspirin
()

In this reaction, it is very crucial to know the
availability of aspirin at a given time. Using the
LT method, it is straight forward to know the
concentration of all the products and the
intermediates involved in the reaction at any time.

The rate equations for this reaction are:

% -k Alyd=~(k + )4 (13)
9B _ A-kB (14)
dt
4 a-kC (15)
dr
dD _} B+kC (16)
dt

where A = APS, B = phenyl salicylate, C =
aspirin, D = salicylic acid. The hydrolysis of APS
also produces acetic acid (from A to B and from C
to D) and phenol (from A to C and B to D).

Hence their concentrations are the same as the
concentrations of the main products.

After applying LT to the above equations and
using equation (2) and letting By =Co = Do =0, we
get

o]

é
Ky H
Phenyl salicylate
“EH,CO0H ®) - CHOHN O
Ky

COOH

CO-OCgHs

COOH

OH

k‘/
Salicylic acid
-CH,CO0H H,0 ©)

0-CO-CH,

oo (an
stk +k,
b9 - ko (18)
s+ky (s+k3)(s+kl+k2)
c= ka _ ky4, 19)
s+k, (s +k)(s+k +k)
gt ke
a s s
or
.Y Kty (20)

I 4é vl MU
s(s+k)(s+k + k) - s(s+k)s+R+ k)

To get the respective concentrations, we need to
apply inverse Laplace transformation.  For A,
equation (17) is similar to equation (8), except that
the rate constant k is replaced with k; + k.

A(t) = Ay exp[—(k, + k)] (21)

The concentration of B is obtained by applying
inverse LT to Eq. (18) and using the Table 1 (fifth

entry).

B()= @2

k;CAo— - lexp(kst) —exp(-(k + k)]

ky+

3
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The equation for the concentration of C as a
function of time is similar to B where the rate
constant k4 is involved instead of kj. Using the
fifth entry in Tablel we get

cly=—th
4k, =k,

Xlexphit) —exp-(k + k)0 23)
For the final product D, its concentration can be
obtained by taking the inverse LT of equation (20)
and using the result of Table 1 (sixth entry) as:

D(t) = 4,|1- kyexp(—k;t) B k,exp(—k,t)
k+k,+ky k+k,—k,

+ (ksk, + gk, — Kok, ) exp=(k; + Ky )t
(k + &, — ks‘)(kl +h,—ky)

@4

Hence, using LT methods it is straight forward to
get the expressions for the concentrations of all
the species involved in the reaction. This method
can be applied to much more complicated cases,
in the similar manner.

The concentration of D increases monotonically
with time, whereas B and C increase initially

Logarithmic Transform

Equation
y=21.4x35.6

l Transform

Equation in new variable
log y =1.330+1.551

before decreasing again as they form a common
product D. This type of information is very useful
in determining the temporal availability of drugs
under physiological conditions. The use of
Mathcad and Maple softwares to get the inverse
Laplace Transforms for this reaction are discussed
in the Appendix.

CONCLUSIONS

We have applied the Laplace Transform method
to two cases of drug decomposition processes. A
quick understanding of the variations of the
concentrations of different species involved in the
drug decompositions can be easily obtained using
LT method. These applications show that LT
method is a good alternative to direct methods for
solving differential rate equations, particularly
when the rate process is much complicated. In
our case studies we have used tabular form of the
LT pairs, which are readily available in
mathematical text books. However, in the
absence of a suitable table such as Table 1, the LT
method can be easily implemented using the
softwares like Maple or MathCad.

Laplace Tranéform

Differential equation
dA/dt= -kt

l Transform
¥

Equation in new variable
sa—A, =—ka

Solve So .
olve
v .
log y =2.881 -
Soln. in new variable
Inverse Transform A,
a=
v s+k
y=7603 Inverse
Transform
Table of LT MathCAD or Maple
A=At A=Ag®

Figure 1. An analogy of solving an algebraic equation using the logarithmic transformation and a differential equation

using the Laplace Transform method.
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Table 1. Some Useful Laplace Transform Pairs. F(s) is the Laplace Transform of the function f(t).

No. F(s) ; F(@®)
1. A 4,
s B
2. 2 t
SZ
3 1 exp (-kt)
s+k
4 1 L (- exp(~k)
s(s+k) k
. ' 1
5. 1 —— [exp(—kt) — exp(—k,1)]
(s+h)s+hy) k, K, |
6. 1 1 exp(-kt) exp(—k,t)
s(s+k)(s+ky) Kk kk,—-k) k(k-k)
APPENDIX 1 _ >invlaplace((k1* A0)/((s+k3)*(stk1+k2)),s,t);
Using Maple7 to find the Inverse Laplace ]E;ressing return will produce
Transform of a sequential competitive four k1 A0( QRN _ (KR "y

component system kl+k2—-k3

. . . hich i tion (22).
First we need to invoke the integral transform which is equation ( ).

command. This can be done by typing with*
(inttrans): We only need to type this command
once. The command for getting the inverse
Laplace Transform is > invlaplace(expresion,s,t);
This command will transform the expression

(iii) To find C using equation (19), the command
required and the resulting equation are:
inviaplace((k2*A0)/((stkd)*(stk1+k2)),s,t);

(kR (kD
written in terms of s variable to a function of t k2 A0 (—e +e )
(time). —kd + kI + k2
()To find the concentration of A using equation which is equation (23).

(17), we need to type

(iv) To find D, use equation (20) to type
>invlaplace((k3*k1*A0)/(s*(s+k3)*(s+k1

>invlaplace(A0/(s+k1+k2),s,t);

. k
Pressing return will produce 40 ¢’ ™' **" which FR2))HEKA*K2Z* A0)/(s* (s+Hkd)* (s+k1+k2)),
. fion (21 !
is equation (21) s.0);
(ii) To find B using equation (18), we type the
following:
96
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of o€ k2 | (K3k1+ k4k2 - k3k4)e A0
Kl+k2-k4 (k14 k2 - k3)(k1+ k2 - k4)
e
———— 41
K1+ k2 - k3

which is the same as equation (24).

APPENDIX 2

Using MathCAD to find the Laplace or Inverse
Laplace Transform

The use of MathCAD to get the inverse Laplace
transform is quite simple and straightforward. In
Just a few steps we can get the inverse transform.
The answer given by MathCAD for some cases,
may require some simplification. The following is
an example of how to find the solution to the

sequential first order reaction ie.

A_k_1> BLC using MathCAD. We will find

the concentrations of A, B and C as a function of
time. Recall that (see text)

a=th Al
s+k

To find A, we need to get the inverse LT using
Mathc AD. Type the following (written in bold)

1. Type AO/k +s. The resulting equation should
be the same as the right hand side of equation
Al,

2. Place the cursor at the letter s.

3. Click the following (in the order written to
get the inverse transform.

Symbolics, Laplace Transform, Inverse
Transform.  After pressing return, it will
produce

A0 exp(-kt) (A2)

Note: You will get an incorrect answer if the
cursor is not at the letter s or if you choose
Laplace Transform instead of inverse Laplace
Transform.

To find B: applying LT on rate equation for B i.e

9B o jd—kB
dt

we will get (letting By = 0)

b= kA, (A3)
(s+k)(s+k)
Type the following;

1. Type k 1* A0 sb (sb= space bar) / (s + k1) *
(s + k 2) The equation should be the same as
the right hand side of equation A2.

2. Place the cursor at the letter s.

3. Click the following to get the inverse
transform Symbolics, Laplace Transform,
Inverse Transform.

The resulting equation is

(A4

B= kk‘f}c [exp(~kf) — exp(~ky1)]

2 I

Similarly, applying LT on the rate equation
involving C i.e

€y
dt

will give us (setting C, =0),

_ kk A4y (A5)
s(s+k)(s+k,)

To find C, type the following:
1. k2*Kk1*A0 sb sb (press space bar twice)

/s*(s+K1)*(s+k2)
2. Place the cursor at the letter s.

-3.  Click the following to get the inverse

transform. Symbolics, Laplace Transform,
Inverse Transform.

The resulting equation is

C=4l1- k, expkt) + k exp(—k,t) (A6)
ky—k ky—k
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