THE CYTOTOXICITY EFFECTS OF OUTER MEMBRANE VESICLES ISOLATED FROM HOSPITAL AND LABORATORY STRAINS OF PSEUDOMONAS AERUGINOSA ON HUMAN KERATINOCYTE CELL LINE

Main Article Content

Ali M. Almashgab
Esam Bashir Yahya
Afreen Banu

Abstract

The pathogenicity of Pseudomonas aeruginosa gained from secreting virulence factors called Outer membrane vesicles (OMVs), this study aimed to determine the concentration of OMVs of two strains of P. aeruginosa and estimate the cytotoxicity effects of the isolated vesicles on human keratinocyte cell line HaCaT biomass. OMVs isolated from hospital strain was higher than from laboratory strain which support that hospital strain is more toxic than laboratory strain, the highest OMVs detected was from laboratory strain treated with Gentamicin, the response to the antibiotic stimulated the bacteria to secrete more virulence factors seeking for protection. The toxicity caused by Outer membrane vesicles showed a loss of biomass in hospital strain and a slight increase of biomass in laboratory strain, and that is another evident that hospital strain are more toxic than lab strain. The biomass and pictures illustrated that the cells still growing rapidly when it treated with low concentration of OMVs.

Downloads

Download data is not yet available.

Article Details

How to Cite
Almashgab, A. M., Yahya, E. B., & Banu, A. (2020). THE CYTOTOXICITY EFFECTS OF OUTER MEMBRANE VESICLES ISOLATED FROM HOSPITAL AND LABORATORY STRAINS OF PSEUDOMONAS AERUGINOSA ON HUMAN KERATINOCYTE CELL LINE. Malaysian Journal of Science, 39(3), 45–53. https://doi.org/10.22452/mjs.vol39no3.3
Section
Original Articles

References

Abdul Khalil, H., Adnan, A., Yahya, E. B., Olaiya, N., Safrida, S., Hossain, M., . . . Oyekanmi, A. (2020). A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 12(8), 1759.

Al-Tameemi, W., Dunnill, C., Hussain, O., Komen, M. M., van den Hurk, C. J., Collett, A., & Georgopoulos, N. T. (2014). Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity. Toxicology in Vitro, 28(8), 1366-1376.

Baumgarten, T., Sperling, S., Seifert, J., von Bergen, M., Steiniger, F., Wick, L. Y., & Heipieper, H. J. (2012). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol., 78(17), 6217-6224.

Bjarnsholt, T., Alhede, M., Alhede, M., Eickhardt-Sørensen, S. R., Moser, C., Kühl, M., . . . Høiby, N. (2013). The in vivo biofilm. Trends in microbiology, 21(9), 466-474.

Bushell, F. M., Tonner, P. D., Jabbari, S., Schmid, A. K., & Lund, P. A. (2019). Synergistic impacts of organic acids and pH on growth of Pseudomonas aeruginosa: A comparison of parametric and Bayesian non-parametric methods to model growth. Frontiers in Microbiology, 9, 3196.
Halstead, F. D., Rauf, M., Moiemen, N. S., Bamford, A., Wearn, C. M., Fraise, A. P., . . . Webber, M. A. (2015). The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PloS one, 10(9).

Kadurugamuwa, J. L., & Beveridge, T. J. (1999). Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology, 145(8), 2051-2060.

Kameli, N., Beuken, E., Savelkoul, P., & Stassen, F. (2018). Outer membrane vesicles of E. coli-mediated resistance to ampicillin by carrying resistant genes and proteins. Journal of Extracellular Vesicles, 7, 167-167.

Klimentová, J., & Stulík, J. (2015). Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological research, 170, 1-9.

Krivonogova, A., Isaeva, A., Loretts, O., & Chentsova, A. (2019). Composition and antibiotic susceptibility of opportunistic pathogenic microflora in poultry farms aimed at egg or meat farming. Paper presented at the International Scientific and Practical Conference “Digital agriculture-development strategy”(ISPC 2019).

Kukavica-Ibrulj, I., Bragonzi, A., Winstanley, C., Sanschagrin, F., OToole, G., & Levesque, R. C. (2007). In Vivo Growth of Pseudomonas aeruginosa Strains PAO1, PA14 and the Hypervirulent LESB58 in a Rat Model of Chronic Lung Infection. Journal of bacteriology.
Kulp, A., & Kuehn, M. J. (2010). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology, 64, 163-184.

MacDonald, I. A., & Kuehn, M. J. (2012). Offense and defense: microbial membrane vesicles play both ways. Research in microbiology, 163(9-10), 607-618.

MacDonald, I. A., & Kuehn, M. J. (2013). Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. Journal of bacteriology, 195(13), 2971-2981.

Metruccio, M. M., Evans, D. J., Gabriel, M. M., Kadurugamuwa, J. L., & Fleiszig, S. M. (2016). Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion. Frontiers in Microbiology, 7, 871.
Perez-Cruz, C., Brianso, F., & Mercade, E. (2018). Biofilm-related sRNAs are differentially encapsulated in membrane vesicles from Pseudomonas aeruginosa PAO1. Journal of Extracellular Vesicles, 7, 167-167.

Shah, S., Gaikwad, S., Nagar, S., Kulshrestha, S., Vaidya, V., Nawani, N., & Pawar, S. (2019). Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 35(1), 34-49.
Sharma, R., Munns, K., Alexander, T., Entz, T., Mirzaagha, P., Yanke, L. J., . . . McAllister, T. (2008). Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting. Appl. Environ. Microbiol., 74(20), 6178-6186.

Sønderholm, M., Kragh, K. N., Koren, K., Jakobsen, T. H., Darch, S. E., Alhede, M., . . . Bjarnsholt, T. (2017). Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Appl. Environ. Microbiol., 83(9), e00113-00117.

Toyofuku, M., Nomura, N., & Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17(1), 13-24.

Turnbull, L., Toyofuku, M., Hynen, A. L., Kurosawa, M., Pessi, G., Petty, N. K., . . . Shimoni, R. (2016). Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nature communications, 7(1), 1-13.

Wai, S. N., Westermark, M., Oscarsson, J., Jass, J., Maier, E., Benz, R., & Uhlin, B. E. (2003). Characterization of dominantly negative mutant ClyA cytotoxin proteins in Escherichia coli. Journal of bacteriology, 185(18), 5491-5499.

Yahya, E. B., Alhawari, S. M., Amhimmid, K., AbuAeshah, R. H. A., & Saada, A. O. (2018). EVALUATION OF IN-VITROANTIBACTERIAL ACTIVITY OF AQUEOUS AND ALCOHOLIC EXTRACTS OF THE PEELS PUNICA GRANATUM AND OLEA EUROPAEA LEAVES. Journal of Sciences and Technologies (Medical Science), 2(1).

Yun, S. H., Park, E. C., Lee, S.-Y., Lee, H., Choi, C.-W., Yi, Y.-S., . . . Kim, H.-Y. (2018). Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clinical proteomics, 15(1), 1-11.