NEUTRON INDUCED 55Mn REACTION IN THE ENERGY RANGE 0.001 MeV TO 40 MeV
Main Article Content
Abstract
Neutron induced 55Mn reactions are evaluated in the energy range 0.001 MeV to 40 MeV using TALYS 1.95 computer code. During this evaluation, local and global parameterisations of Koning and Delaroche are used in nuclear optical model. Comparisons were made with experimental data, collected from EXFOR and other sources. Some optical model parameters (OMP) were needed to be adjusted for better agreement between theoretical calculations and experimental findings. Various evaluated libraries such as ENDF, JENDL etc. are being checked and compared with our evaluation. TALYS evaluation shows better agreement when parameters were adjusted.
Downloads
Article Details
Transfer of Copyrights
- In the event of publication of the manuscript entitled [INSERT MANUSCRIPT TITLE AND REF NO.] in the Malaysian Journal of Science, I hereby transfer copyrights of the manuscript title, abstract and contents to the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) for the full legal term of copyright and any renewals thereof throughout the world in any format, and any media for communication.
Conditions of Publication
- I hereby state that this manuscript to be published is an original work, unpublished in any form prior and I have obtained the necessary permission for the reproduction (or am the owner) of any images, illustrations, tables, charts, figures, maps, photographs and other visual materials of whom the copyrights is owned by a third party.
- This manuscript contains no statements that are contradictory to the relevant local and international laws or that infringes on the rights of others.
- I agree to indemnify the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) in the event of any claims that arise in regards to the above conditions and assume full liability on the published manuscript.
Reviewer’s Responsibilities
- Reviewers must treat the manuscripts received for reviewing process as confidential. It must not be shown or discussed with others without the authorization from the editor of MJS.
- Reviewers assigned must not have conflicts of interest with respect to the original work, the authors of the article or the research funding.
- Reviewers should judge or evaluate the manuscripts objective as possible. The feedback from the reviewers should be express clearly with supporting arguments.
- If the assigned reviewer considers themselves not able to complete the review of the manuscript, they must communicate with the editor, so that the manuscript could be sent to another suitable reviewer.
Copyright: Rights of the Author(s)
- Effective 2007, it will become the policy of the Malaysian Journal of Science (published by the Faculty of Science, University of Malaya) to obtain copyrights of all manuscripts published. This is to facilitate:
(a) Protection against copyright infringement of the manuscript through copyright breaches or piracy.
(b) Timely handling of reproduction requests from authorized third parties that are addressed directly to the Faculty of Science, University of Malaya. - As the author, you may publish the fore-mentioned manuscript, whole or any part thereof, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
You may produce copies of your manuscript, whole or any part thereof, for teaching purposes or to be provided, on individual basis, to fellow researchers. - You may include the fore-mentioned manuscript, whole or any part thereof, electronically on a secure network at your affiliated institution, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- You may include the fore-mentioned manuscript, whole or any part thereof, on the World Wide Web, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- In the event that your manuscript, whole or any part thereof, has been requested to be reproduced, for any purpose or in any form approved by the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers), you will be informed. It is requested that any changes to your contact details (especially e-mail addresses) are made known.
Copyright: Role and responsibility of the Author(s)
- In the event of the manuscript to be published in the Malaysian Journal of Science contains materials copyrighted to others prior, it is the responsibility of current author(s) to obtain written permission from the copyright owner or owners.
- This written permission should be submitted with the proof-copy of the manuscript to be published in the Malaysian Journal of Science
References
Abfalterer, W. P., Bateman, F. B., Dietrich, F. S., Finlay, R. W., Haight, R. C., & Morgan, G. L. (2001). Measurement of neutron total cross sections up to 560 MeV. Physical Review C, 63(4), 44608. https://doi.org/10.1103/PhysRevC.63.044608
Allan, D. L. (1961). An experimental test of the statistical theory of nuclear reactions. Nuclear Physics, 24, 274–299. https://doi.org/10.1016/0029-5582(61)90380-7
Barough, M. S., Bharud, V. D., Patil, B. J., Attar, F. M. D., Bhoraskar, V. N., & Dhole, S. D. (2017). Measurement and Estimation of Cross Sections for 55Mn(n, γ)56Mn and 65Cu(n, γ)66Cu Reactions Using Accelerator-Based Neutron Source. Nuclear Science and Engineering, 187(3), 302–311. https://doi.org/10.1080/00295639.2017.1323505
Bostan, M., & Qaim, S. M. (1994). Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Physical Review C, 49(1), 266–271. https://doi.org/10.1103/PhysRevC.49.266
Canbay, C. A., Ozgen, S., & Genc, Z. K. (2014). Thermal and microstructural investigation of Cu–Al–Mn–Mg shape memory alloys. Applied Physics A, 117(2), 767–771. https://doi.org/10.1007/s00339-014-8643-5
Coté, R. E., Bollinger, L. M., & Thomas, G. E. (1964). Total Neutron Cross Section of Manganese. Physical Review, 134(5B), B1047–B1051. https://doi.org/10.1103/PhysRev.134.B1047
Fischer, U., Angelone, M., Avrigeanu, M., Avrigeanu, V., Bachmann, C., Dzysiuk, N., Fleming, M., Konobeev, A., Kodeli, I., Koning, A., Leeb, H., Leichtle, D., Ogando, F., Pereslavtsev, P., Rochman, D., Sauvan, P., & Simakov, s. (2018). The role of nuclear data for fusion nuclear technology.Fusion Engineering and Design, 136. https://doi.org/10.1016/j.fusengdes.2018.01.036
Foster, D. G., & Glasgow, D. W. (1971). Neutron Total Cross Sections, 2.5-15 MeV. I. Experimental. Physical Review C, 3(2), 576–603. https://doi.org/10.1103/PhysRevC.3.576
Fujita, I., Sonoda, M., Katase, A., Wakuta, Y., Tawara, H., Hyakutake, M., & Iwatani, K. (1972). Inelastic Scattering of 14MeV Neutrons by Medium Weight Nuclei. Journal of Nuclear Science and Technology, 9(5), 301–309. https://doi.org/10.1080/18811248.1972.9734846
Glazkov, N. P. (1963). Cross sections of the inelastic scattering of neutrons with energies of 0.4–1.2 MeV on medium and light nuclei. Soviet Atomic Energy, 15(5), 1173–1176. https://doi.org/10.1007/BF01115942
Holmqvist, B., Wiedling, T., Benzi, V., & Zuffi, L. (1970). Analysis of fast neutron elastic scattering from tantalum using a non-spherical optical potential. Nuclear Physics A, 150(1), 105–113. https://doi.org/https://doi.org/10.1016/0375-9474(70)90460-4
Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese Is Essential forNeuronalHealth. Annual review of nutrition, 35, 71–108. https://doi.org/10.1146/annurev-nutr-071714-034419
Kazi, T. G., Afridi, H. I., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., & Kandhro, G. A. (2008). Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biological trace element research, 122(1), 1–18. https://doi.org/10.1007/s12011-007-8062-y
Koning, A. J. (2015). Bayesian Monte Carlo method for nuclear data evaluation. The European Physical Journal A, 51(12), 184. https://doi.org/10.1140/epja/i2015-15184-x
Koning, A. J., & Delaroche, J. P. (2003). Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A, 713(3), 231–310. https://doi.org/https://doi.org/10.1016/S0375-9474(02)01321-0
Koning, A. J., & Rochman, D. (2012). Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets, 113(12), 2841–2934. https://doi.org/https://doi.org/10.1016/j.nds.2012.11.002
Kwakye, G. F., Paoliello, M. M., Mukhopadhyay, S., Bowman, A. B., & Aschner, M. (2015). Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. International journal of environmental research and public health, 12(7), 7519–7540. https://doi.org/10.3390/ijerph120707519
Lorenz, A., & Schmidt, J. J. (1986). Nuclear data: Serving basic needs of science and technology. IAEA Bulletin, 28(4)17-20. https://www.iaea.org/sites/default/files/28405081720.pdf
Lv, M., Chen, M., Zhang, R., Zhang, W., Wang, C., Zhang, Y., Wei, X., Guan, Y., Liu, J., Feng, K., Jing, M., Wang, X., Liu, Y.-C., Mei, Q., Han, W., & Jiang, Z. (2020). Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 30(11), 966–979. https://doi.org/10.1038/s41422-020-00395-4
Mitra, B., & Ghose, A. M. (1966). (n, p) cross sections of some low Z nuclei for 14.8 MeV neutrons. Nuclear Physics, 83(1), 157–165. https://doi.org/https://doi.org/10.1016/0029-5582(66)90346-4
Plompen, A. J. M., Cabellos, O., De Saint Jean, C., Fleming, M., Algora, A., Angelone, M., Archier, P., Bauge, E., Bersillon, O., Blokhin, A., Cantargi, F., Chebboubi, A., Diez, C., Duarte, H., Dupont, E., Dyrda, J., Erasmus, B., Fiorito, L., Fischer, U., … Žerovnik, G. (2020). The joint evaluated fission and fusion nuclear data library, JEFF-3.3. European Physical Journal A, 56(7). https://doi.org/10.1140/epja/s10050-020-00141-9
Prasad, R., & Sarkar, D. C. (1971). Measured (n, p) reaction cross-sections and their predicted values at 14.8 MeV. Il Nuovo Cimento A (1965-1970), 3(4), 467–478. https://doi.org/10.1007/BF02823319
Rahman, A. K. M. R. (2012a). Neutron cross-sections for 55Mn in the energy range from 0.2 to 22 MeV. Turkish Journal of Physics. https://doi.org/10.3906/fiz-1107-3
Rahman, A. K. M. R. (2012b). Neutron interaction cross-sections for 27Al in the energy range from 0.2 to 22MeV using optical model program. Science Journal Ubon Ratchathni University, Thailand, 2.
Rahman, A. K. M. R., & Awal, A. (2020). Production of 149Tb, 152Tb, 155Tb and 161Tb from gadolinium using different light-particle beams. Journal of Radioanalytical and Nuclear Chemistry, 323(2), 731–740. https://doi.org/10.1007/s10967-019-06973-0
Rahman, A. K. M. R., Meaze, A. K. M. M., Chakraborty, S. R., & Mohsin, M. (2019). Evaluations of n + 27Al reaction in the energy range 0.1–200 MeV. Indian Journal of Physics, 94. https://doi.org/10.1007/s12648-019-01555-y
Rahman, A. K. M. R., & Zubair, M. A. (2020a). Excitation functions of 58Ni(n, charged particle) from threshold to 20 MeV using NLD models. Indian Journal of Physics, 95. https://doi.org/10.1007/s12648-020-01808-1
Rahman, A. K. M. R., & Zubair, M. A. (2020b). Cross sections of 56Fe(n, p)56Mn, 55Mn(n, p)55Cr, 52Cr(n, p)52V, 56Fe(n, α)53Cr, 55Mn(n, α)52V and 52Cr(n, α)49Ti reactions using phenomenological level density models from threshold to 20 MeV. Applied Radiation and Isotopes, 166, 109429. https://doi.org/https://doi.org/10.1016/j.apradiso.2020.109429
Reshid, T. S. (2013). Calculation of Excitation Function of Some Structural Fusion Material for (n, p) Reactions up to 25 MeV. Journal of Fusion Energy, 32(2), 164–170. https://doi.org/10.1007/s10894-012-9541-5
Rohr, G., &Friedland, E. (1967). A study of neutron resonances of vanadium and manganese. Nuclear Physics A, 104(1), 1–16. https://doi.org/10.1016/0375-9474(67)90753-1
Shibata, K. (1989). Calculation of Neutron-Induced Reaction Cross Sections of Manganese-55. Journal of Nuclear Science and Technology, 26(10), 955–965. https://doi.org/10.1080/18811248.1989.9734411
Takahashi, A., Sasaki, Y., Maekawa,F., &Sugimoto, H. (1989)Measurement and analysis of double differential neutron emission cross sections at En = 14.1 MeV for 93Nband 181Ta (INDC(JPN)–118/L). International Atomic Energy Agency (IAEA).
Thomson, D. B. (1963). Nuclear Level Densities and Reaction Mechanisms from Inelastic Neutron Scattering. Physical Review, 129(4), 1649–1667. https://doi.org/10.1103/PhysRev.129.1649
Weigold, E. (1960). Cross Sections for the Interaction of 14·5 MeV Neutrons with Manganese and Cobalt. Australian Journal of Physics, 13(2), 186–188. https://doi.org/10.1071/PH600186
Zamin, M. (1981). The Role of Mn in the Corrosion Behavior of Al-Mn Alloys. Corrosion, 37(11), 627–632. https://doi.org/10.5006/1.3577549