NEUTRON INDUCED 55Mn REACTION IN THE ENERGY RANGE 0.001 MeV TO 40 MeV

Main Article Content

A. K. M. Rezaur Rahman
Taslim Hoque Happy
Mustofa Khalid Ovi
Abdul Awal
Mark Anthony Bromuela
MD. Jubayer Rahman Akhand
Shyamal Ranjan Chakraborty
A. K. M. Moinul Haque Meaze

Abstract

Neutron induced 55Mn reactions are evaluated in the energy range 0.001 MeV to 40 MeV using TALYS 1.95 computer code. During this evaluation, local and global parameterisations of Koning and Delaroche are used in nuclear optical model. Comparisons were made with experimental data, collected from EXFOR and other sources. Some optical model parameters (OMP) were needed to be adjusted for better agreement between theoretical calculations and experimental findings. Various evaluated libraries such as ENDF, JENDL etc. are being checked and compared with our evaluation. TALYS evaluation shows better agreement when parameters were adjusted.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rahman, A. K. M. R., Hoque Happy, T. ., Ovi, M. K., Awal, A., Bromuela, M. A., Akhand, M. J. R. ., Chakraborty, S. R. ., & A. K. M. Moinul Haque Meaze. (2023). NEUTRON INDUCED 55Mn REACTION IN THE ENERGY RANGE 0.001 MeV TO 40 MeV. Malaysian Journal of Science, 42(3), 65–74. https://doi.org/10.22452/mjs.vol42no3.9
Section
Original Articles
Author Biography

A. K. M. Rezaur Rahman, Department of Physics, University of Chittagong, Chittagong, BANGLADESH.

Professor

Department of Physics

References

Abfalterer, W. P., Bateman, F. B., Dietrich, F. S., Finlay, R. W., Haight, R. C., & Morgan, G. L. (2001). Measurement of neutron total cross sections up to 560 MeV. Physical Review C, 63(4), 44608. https://doi.org/10.1103/PhysRevC.63.044608

Allan, D. L. (1961). An experimental test of the statistical theory of nuclear reactions. Nuclear Physics, 24, 274–299. https://doi.org/10.1016/0029-5582(61)90380-7

Barough, M. S., Bharud, V. D., Patil, B. J., Attar, F. M. D., Bhoraskar, V. N., & Dhole, S. D. (2017). Measurement and Estimation of Cross Sections for 55Mn(n, γ)56Mn and 65Cu(n, γ)66Cu Reactions Using Accelerator-Based Neutron Source. Nuclear Science and Engineering, 187(3), 302–311. https://doi.org/10.1080/00295639.2017.1323505

Bostan, M., & Qaim, S. M. (1994). Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Physical Review C, 49(1), 266–271. https://doi.org/10.1103/PhysRevC.49.266

Canbay, C. A., Ozgen, S., & Genc, Z. K. (2014). Thermal and microstructural investigation of Cu–Al–Mn–Mg shape memory alloys. Applied Physics A, 117(2), 767–771. https://doi.org/10.1007/s00339-014-8643-5

Coté, R. E., Bollinger, L. M., & Thomas, G. E. (1964). Total Neutron Cross Section of Manganese. Physical Review, 134(5B), B1047–B1051. https://doi.org/10.1103/PhysRev.134.B1047

Fischer, U., Angelone, M., Avrigeanu, M., Avrigeanu, V., Bachmann, C., Dzysiuk, N., Fleming, M., Konobeev, A., Kodeli, I., Koning, A., Leeb, H., Leichtle, D., Ogando, F., Pereslavtsev, P., Rochman, D., Sauvan, P., & Simakov, s. (2018). The role of nuclear data for fusion nuclear technology.Fusion Engineering and Design, 136. https://doi.org/10.1016/j.fusengdes.2018.01.036

Foster, D. G., & Glasgow, D. W. (1971). Neutron Total Cross Sections, 2.5-15 MeV. I. Experimental. Physical Review C, 3(2), 576–603. https://doi.org/10.1103/PhysRevC.3.576

Fujita, I., Sonoda, M., Katase, A., Wakuta, Y., Tawara, H., Hyakutake, M., & Iwatani, K. (1972). Inelastic Scattering of 14MeV Neutrons by Medium Weight Nuclei. Journal of Nuclear Science and Technology, 9(5), 301–309. https://doi.org/10.1080/18811248.1972.9734846

Glazkov, N. P. (1963). Cross sections of the inelastic scattering of neutrons with energies of 0.4–1.2 MeV on medium and light nuclei. Soviet Atomic Energy, 15(5), 1173–1176. https://doi.org/10.1007/BF01115942

Holmqvist, B., Wiedling, T., Benzi, V., & Zuffi, L. (1970). Analysis of fast neutron elastic scattering from tantalum using a non-spherical optical potential. Nuclear Physics A, 150(1), 105–113. https://doi.org/https://doi.org/10.1016/0375-9474(70)90460-4

Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese Is Essential forNeuronalHealth. Annual review of nutrition, 35, 71–108. https://doi.org/10.1146/annurev-nutr-071714-034419

Kazi, T. G., Afridi, H. I., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., & Kandhro, G. A. (2008). Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biological trace element research, 122(1), 1–18. https://doi.org/10.1007/s12011-007-8062-y

Koning, A. J. (2015). Bayesian Monte Carlo method for nuclear data evaluation. The European Physical Journal A, 51(12), 184. https://doi.org/10.1140/epja/i2015-15184-x

Koning, A. J., & Delaroche, J. P. (2003). Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A, 713(3), 231–310. https://doi.org/https://doi.org/10.1016/S0375-9474(02)01321-0

Koning, A. J., & Rochman, D. (2012). Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets, 113(12), 2841–2934. https://doi.org/https://doi.org/10.1016/j.nds.2012.11.002

Kwakye, G. F., Paoliello, M. M., Mukhopadhyay, S., Bowman, A. B., & Aschner, M. (2015). Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. International journal of environmental research and public health, 12(7), 7519–7540. https://doi.org/10.3390/ijerph120707519

Lorenz, A., & Schmidt, J. J. (1986). Nuclear data: Serving basic needs of science and technology. IAEA Bulletin, 28(4)17-20. https://www.iaea.org/sites/default/files/28405081720.pdf

Lv, M., Chen, M., Zhang, R., Zhang, W., Wang, C., Zhang, Y., Wei, X., Guan, Y., Liu, J., Feng, K., Jing, M., Wang, X., Liu, Y.-C., Mei, Q., Han, W., & Jiang, Z. (2020). Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 30(11), 966–979. https://doi.org/10.1038/s41422-020-00395-4

Mitra, B., & Ghose, A. M. (1966). (n, p) cross sections of some low Z nuclei for 14.8 MeV neutrons. Nuclear Physics, 83(1), 157–165. https://doi.org/https://doi.org/10.1016/0029-5582(66)90346-4

Plompen, A. J. M., Cabellos, O., De Saint Jean, C., Fleming, M., Algora, A., Angelone, M., Archier, P., Bauge, E., Bersillon, O., Blokhin, A., Cantargi, F., Chebboubi, A., Diez, C., Duarte, H., Dupont, E., Dyrda, J., Erasmus, B., Fiorito, L., Fischer, U., … Žerovnik, G. (2020). The joint evaluated fission and fusion nuclear data library, JEFF-3.3. European Physical Journal A, 56(7). https://doi.org/10.1140/epja/s10050-020-00141-9

Prasad, R., & Sarkar, D. C. (1971). Measured (n, p) reaction cross-sections and their predicted values at 14.8 MeV. Il Nuovo Cimento A (1965-1970), 3(4), 467–478. https://doi.org/10.1007/BF02823319

Rahman, A. K. M. R. (2012a). Neutron cross-sections for 55Mn in the energy range from 0.2 to 22 MeV. Turkish Journal of Physics. https://doi.org/10.3906/fiz-1107-3

Rahman, A. K. M. R. (2012b). Neutron interaction cross-sections for 27Al in the energy range from 0.2 to 22MeV using optical model program. Science Journal Ubon Ratchathni University, Thailand, 2.

Rahman, A. K. M. R., & Awal, A. (2020). Production of 149Tb, 152Tb, 155Tb and 161Tb from gadolinium using different light-particle beams. Journal of Radioanalytical and Nuclear Chemistry, 323(2), 731–740. https://doi.org/10.1007/s10967-019-06973-0

Rahman, A. K. M. R., Meaze, A. K. M. M., Chakraborty, S. R., & Mohsin, M. (2019). Evaluations of n + 27Al reaction in the energy range 0.1–200 MeV. Indian Journal of Physics, 94. https://doi.org/10.1007/s12648-019-01555-y

Rahman, A. K. M. R., & Zubair, M. A. (2020a). Excitation functions of 58Ni(n, charged particle) from threshold to 20 MeV using NLD models. Indian Journal of Physics, 95. https://doi.org/10.1007/s12648-020-01808-1

Rahman, A. K. M. R., & Zubair, M. A. (2020b). Cross sections of 56Fe(n, p)56Mn, 55Mn(n, p)55Cr, 52Cr(n, p)52V, 56Fe(n, α)53Cr, 55Mn(n, α)52V and 52Cr(n, α)49Ti reactions using phenomenological level density models from threshold to 20 MeV. Applied Radiation and Isotopes, 166, 109429. https://doi.org/https://doi.org/10.1016/j.apradiso.2020.109429

Reshid, T. S. (2013). Calculation of Excitation Function of Some Structural Fusion Material for (n, p) Reactions up to 25 MeV. Journal of Fusion Energy, 32(2), 164–170. https://doi.org/10.1007/s10894-012-9541-5

Rohr, G., &Friedland, E. (1967). A study of neutron resonances of vanadium and manganese. Nuclear Physics A, 104(1), 1–16. https://doi.org/10.1016/0375-9474(67)90753-1

Shibata, K. (1989). Calculation of Neutron-Induced Reaction Cross Sections of Manganese-55. Journal of Nuclear Science and Technology, 26(10), 955–965. https://doi.org/10.1080/18811248.1989.9734411

Takahashi, A., Sasaki, Y., Maekawa,F., &Sugimoto, H. (1989)Measurement and analysis of double differential neutron emission cross sections at En = 14.1 MeV for 93Nband 181Ta (INDC(JPN)–118/L). International Atomic Energy Agency (IAEA).

Thomson, D. B. (1963). Nuclear Level Densities and Reaction Mechanisms from Inelastic Neutron Scattering. Physical Review, 129(4), 1649–1667. https://doi.org/10.1103/PhysRev.129.1649

Weigold, E. (1960). Cross Sections for the Interaction of 14·5 MeV Neutrons with Manganese and Cobalt. Australian Journal of Physics, 13(2), 186–188. https://doi.org/10.1071/PH600186

Zamin, M. (1981). The Role of Mn in the Corrosion Behavior of Al-Mn Alloys. Corrosion, 37(11), 627–632. https://doi.org/10.5006/1.3577549