DEGREE SUM ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS

Main Article Content

Mamika Ujianita Romdhini
Athirah Nawawi

Abstract

For a finite group G, let Z(G) be the centre of G. Then the non-commuting graph on G, denoted by ΓG, has G\Z(G) as its vertex set with two distinct vertices vp and vq joined by an edge whenever vpvq vqvp. The degree sum matrix of a graph is a square matrix whose (p,q)-th entry is dvp + dvq whenever p is different from q, otherwise, it is zero, where dvi is the degree of the vertex vi. This study presents the general formula for the degree sum energy, EDS (ΓG), for the non-commuting graph of dihedral groups of order 2n, D2n, for all n ≥ 3.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mamika Ujianita Romdhini, & Nawawi, A. . (2022). DEGREE SUM ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS . Malaysian Journal of Science, 41(sp1), 34–39. https://doi.org/10.22452/mjs.sp2022no.1.5
Section
V-SMS2021

References

Abdollahi, A., Akbari, S., & Maimani, H.R. (2006). Non-commuting graph of a group. Journal of Algebra, 298(2): 468 – 492.

Aschbacher, M. (2000). Finite Group Theory, pp. 1 – 6, Cambridge, UK: Cambridge University Press.

Brouwer, A. E., & Haemers W. H. (2012). Spectra of Graphs, pp. 1 – 19, New York, USA: Springer-Verlag.

Dutta, J. & Nath, R. K. (2018). On laplacian energy of non-commuting graphs of finite groups. Journal of Linear and Topological Algebra, 7(2): 121 – 132.

Fasfous, W. N. T., & Nath, R. K. (2020). Spectrum and energy of non-commuting graphs of finite groups. 1 – 22. Retrieved from ArXiv:2002.10146v1

Gutman, I. (1978). The energy of graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz, 103: 1 – 22.

Gutman, I., Abreau, N. M. M. D., Vinagre, C. T. M., Bonifacio, A.S., & Radenkovic, S. (2008). Relation between energy and laplacian energy. MATCH Communications in Mathematical and in Computer Chemistry, 59: 343 – 354.

Hosamani, S. M., & Ramane, H. S. (2016). On degree sum energy of a graph. European Journal of Pure and Applied Mathematics, 9(3): 340 – 345.

Jog, S. R., & Kotambari, R. (2016). Degree sum energy of some graphs. Annals of Pure and Applied Mathematics, 11(1): 17-27.

Khasraw, S. M. S., Ali, I. D., & Haji, R. R. (2020). On the non-commuting graph of dihedral group, Electronic Journal of Graph Theory and Applications, 8(2): 233 – 239.

Mahmoud, R., Sarmin, N. H., & Erfanian, A. (2017). On the energy of non-commuting graph of dihedral groups. AIP Conference Proceedings, 1830: 070011.

Ramane, H. S., Revankar, D. S., & Patil, J. B. (2013). Bounds for the degree sum eigenvalues and degree sum energy of a graph. International Journal of Pure and Applied Mathematical Sciences, 6(2): 161-167.

Ramane, H. S., & Shinde, S. S. (2017). Degree exponent polynomial of graphs obtained by some graph operations. Electronic Notes in Discrete Mathematics, 63: 161 – 168.