SOLUTION OF ORDINARY DIFFERENTIAL EQUATION vvi (u)=f(u,v,v',v'',v''') USING EIGHTH AND NINTH ORDER RUNGE-KUTTA TYPE METHOD

Main Article Content

Manpreet Kaur
Sangeet Kumar
Jasdev Bhatti
https://orcid.org/0000-0002-6859-2204

Abstract

The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kaur, M., Kumar, S., & Bhatti, J. (2023). SOLUTION OF ORDINARY DIFFERENTIAL EQUATION vvi (u)=f(u,v,v’,v’’,v’’’) USING EIGHTH AND NINTH ORDER RUNGE-KUTTA TYPE METHOD. Malaysian Journal of Science, 42(2), 33–40. https://doi.org/10.22452/mjs.vol42no2.5
Section
Original Articles

References

Abbas F., Abbas Al. Sh.( 2017). Solving initial value problem using Runge-Kutta 6th order method, ARPN Journal of Engineering and Applied Sciences, vol. 12(13): 3953-3961.

Abdi A., Hojjati G., Izzo G., Jackiewicz Z. (2021). Global error estimation for explicit general linear methods, Numerical Algorithms, doi: https://doi.org/10.1007/s11075-021-01146-1

Dormand J.R., El-Mikkawy M.E.A., Prince P.J. (1987). Families of runge-kutta-nystrom formulae, Institute of Mathematics and its Applications Journal of Numerical Analysis, vol. 7: 235-250.

Demba M. A., Ramos H., Kumam P., Watthayu W. (2021). An optimized sixth order explicit RKN method to solve oscillating systems,” Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones XVI Congreso de Matem´atica Aplicada, Gij on (Asturias), Spain, June 14- 18: 15-22.

Ghawadri N., Senu N., Fawzi F., Ismail F., Ibrahim Z. (2018). Diagonally implicit Runge-Kutta type method for directly solving special fourth order ordinary differential equations with Ill-Posed problem of a beam on elastic foundation, Algorithms, vol. 12: 1-10.

Hatun M., Vatansever F. (2016). Differential equation solver simulator for Runge-Kutta methods, Uludag University Journal of the Faculty of ˘ Engineering, vol. 21(1):145-162.

Huang B., Xiao A., Zhang G. ( 2021). Implicit-explicit runge-kutta-rosenbrock methods with error analysis for nonlinear stiff differential equations, Journal of Computational Mathematics, vol. 39(4): 569–590.

Islam M. (2015). A Comparative Study on numerical solutions of initial value problems (IVP) for ordinary differential equations (ODE) with Euler and Runge-Kutta methods, American Journal of Computational Mathematics, vol. 5: 393-404.

Khalid M., Sultana M., Zaidi F. (2014). Numerical solution of sixth-order differential equations arising in astrophysics by neural network, International Journal of Computer Applications, vol. 107(6):1-6.

Mohamed T., Senu N., Ibrahim Z., Long N.( 2018). Efficient two-derivative Runge-Kutta-Nystrom methods for solving general second-order ordinary differential equations y ′ (x) = f(x, y, y′ ), Discrete Dynamics in Nature and Society: 1-10.

Pandey P.( 2018). Solving numerically a sixth order differential equation as coupled finite difference equations approach, MedCrave, vol. 2(6): 1-11.

Sohaib M., Haq S., Mukhtar S., Khan I. (2018). Numerical solution of sixth order boundary-value problems using Legendre wavelet collocation method, Results in Physics, vol. 8: 1204-1208.

Turaci M., Ozis T. (2015). A note on explicit three-derivative Runge-Kutta methods (ThDRK), Bulletin of the International Mathematical Virtual Institute, vol. 5: 65-72.

Turaci M.O. (2021). Two-derivative Runge-Kutta type method with FSAL property, Journal of Modern Technology and Engineering, vol. 6(1):47-52.