INVESTIGATION OF WETTABILITY, ANTIBACTERIAL ACTIVITY, THERMAL INSULATION, AND MECHANICAL CHARACTERISTICS OF ELASTOMER BLEND ADHESIVES WITH HIGH-DENSITY FIBERBOARD WOOD AND ALUMINUM
Main Article Content
Abstract
Attention has recently been given to finding alternative and sustainable raw material sources for wood and metal adhesives, such as polyvinyl alcohol (PVA), corn starch (CS), arabic gum (AG), and dextrins (D). Modifying polymer dispersion using unique substances, such as modifying reactive elastomer liquid (EL) using PVA, CS, AG, or D results in sufficiently moisture-resistant adhesive joins. In the present study, the physical characteristics of EL/blended with the natural polymers PVA, CS, AG, and D, based on high-density fiberboard (HDF) wood and aluminum (Al) adhesives and coatings, were investigated and compared to those of pure EL. The EL was blended with PVA, CS, AG, or D at a ratio of 60/40 (w/w) to form EL/blends. The chemical structures, surface and interface morphology, adhesion strengths (including shear strength and pull-off strength), surface roughness, wettings, color intensity, and thermal insulation of the prepared EL and EL/blends were investigated. A scanning electron microscopy (SEM) investigation confirmed filler dispersion and adhesion between the blends, and coated HDF wood, or Al. The developed EL/AG blend had a pull-off strength of 144±5 and 102±3 MPa and a shear strength of 771±11, and 52±3 N with HDF wood and Al substrate, respectively. The EL/PVA blend had a maximum surface roughness value 4.57 µm, and its average water contact angle (WCA) was 85.6°. A plasma jet was used to treat the surface roughness and hence the wettability of the pure EL and the EL/blends, for example, plasma treatment decreased the roughness of the EL/AG blend from 4.36 to 3.28 μm. WCA, and hence wettability, was also significantly influenced by plasma treatment, for example, plasma treatment decreased the WCA of the pure EL from 71.7±0.4° to 30.7±0.7°. The lightness value of the EL/blends was less than that of the pure EL, indicating that (the color adhesives have darkened). Similarly, the yellowness-blueness and redness-greenness values of the EL/blends were greater than those of the pure EL,( rendering the blended adhesives more reddish and bluish). The EL/AG blend was found to have a minimum thermal conductivity (of 0.27 W/m.K), indicating maximum insulation.
Downloads
Article Details
Transfer of Copyrights
- In the event of publication of the manuscript entitled [INSERT MANUSCRIPT TITLE AND REF NO.] in the Malaysian Journal of Science, I hereby transfer copyrights of the manuscript title, abstract and contents to the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) for the full legal term of copyright and any renewals thereof throughout the world in any format, and any media for communication.
Conditions of Publication
- I hereby state that this manuscript to be published is an original work, unpublished in any form prior and I have obtained the necessary permission for the reproduction (or am the owner) of any images, illustrations, tables, charts, figures, maps, photographs and other visual materials of whom the copyrights is owned by a third party.
- This manuscript contains no statements that are contradictory to the relevant local and international laws or that infringes on the rights of others.
- I agree to indemnify the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) in the event of any claims that arise in regards to the above conditions and assume full liability on the published manuscript.
Reviewer’s Responsibilities
- Reviewers must treat the manuscripts received for reviewing process as confidential. It must not be shown or discussed with others without the authorization from the editor of MJS.
- Reviewers assigned must not have conflicts of interest with respect to the original work, the authors of the article or the research funding.
- Reviewers should judge or evaluate the manuscripts objective as possible. The feedback from the reviewers should be express clearly with supporting arguments.
- If the assigned reviewer considers themselves not able to complete the review of the manuscript, they must communicate with the editor, so that the manuscript could be sent to another suitable reviewer.
Copyright: Rights of the Author(s)
- Effective 2007, it will become the policy of the Malaysian Journal of Science (published by the Faculty of Science, University of Malaya) to obtain copyrights of all manuscripts published. This is to facilitate:
(a) Protection against copyright infringement of the manuscript through copyright breaches or piracy.
(b) Timely handling of reproduction requests from authorized third parties that are addressed directly to the Faculty of Science, University of Malaya. - As the author, you may publish the fore-mentioned manuscript, whole or any part thereof, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
You may produce copies of your manuscript, whole or any part thereof, for teaching purposes or to be provided, on individual basis, to fellow researchers. - You may include the fore-mentioned manuscript, whole or any part thereof, electronically on a secure network at your affiliated institution, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- You may include the fore-mentioned manuscript, whole or any part thereof, on the World Wide Web, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- In the event that your manuscript, whole or any part thereof, has been requested to be reproduced, for any purpose or in any form approved by the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers), you will be informed. It is requested that any changes to your contact details (especially e-mail addresses) are made known.
Copyright: Role and responsibility of the Author(s)
- In the event of the manuscript to be published in the Malaysian Journal of Science contains materials copyrighted to others prior, it is the responsibility of current author(s) to obtain written permission from the copyright owner or owners.
- This written permission should be submitted with the proof-copy of the manuscript to be published in the Malaysian Journal of Science
References
Abd-Elnaiem, A. M., Hussein, S. I., Ali, N. A., Hakamy, A., & Mebed, A. M. (2022). Ameliorating the Mechanical Parameters, Thermal Stability, and Wettability of Acrylic Polymer by Cement Filling for High-Efficiency Waterproofing. Polymers, 14(21), 4671.
Abdullah, A. Q. , Ali N. A. , Hussein , S. I., Hakamy, A., · Abd Elnaiem, A. M. (2023) Improving the Dielectric, Thermal, and Electrical Properties of Poly (Methyl Methacrylate)/Hydroxyapatite Blends by Incorporating Graphene Nanoplatelets . Journal of Inorganic and Organometallic Polymers and Materials, published online 28 may 2023.
Al Alawi, S. M., Hossain, M. A., & Abusham, A. A. (2018). Antimicrobial and cytotoxic comparative study of different extracts of Omani and Sudanese Gum acacia. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 22-26.
Ali, A. M., Jaber, M. A., & Toama, N. A. (2021). Thermal Properties of Polyester/Epoxy Blend. Iraqi Journal of Science, 1128-1134.
Ali, A. N. M., Ali, N. A., Hussein, S. I., Hakamy, A., Raffah, B., Alofi, A. S., & Abd‑Elnaiem, A. M. (2023). Nanoarchitectonics of silver/poly (methyl methacrylate) films: structure, optical characteristics, antibacterial activity, and wettability. Journal of Inorganic and Organometallic Polymers and Materials, 33(3), 694-706.
Ali, N. A., Abd-Elnaiem, A. M., Hussein, S. I., Khalil, A. S., Alamri, H. R., & Assaedi, H. S. (2021). Thermal and mechanical properties of epoxy resin functionalized copper and graphene hybrids using in-situ polymerization method. Current Nanoscience, 17(3), 494-502.
Al-Lhaibi, S. A., & Al-Shabander, B. M. (2022). Photocatalytic Activity and Wettability Properties of ZnO/Sawdust/Epoxy Composites. Iraqi Journal of Physics, 20(4), 54-65.
Almashhadani, N. J. H. (2021). UV-Exposure effect on the mechanical properties of PEO/PVA blends. Iraqi Journal of Science, 1879-1892.
Al-sharuee, I. F. (2019). Thermal conductivity performance of silica aerogel after exposition on different heating under ambient pressure. Baghdad Science Journal, 16(3 (Suppl.)), 0770-0770.
Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968.
AZEEZ, O. (2005). Production of Dextrins from Cassava Starch. Leonardo Journal of Sciences, (7), 9-16.
Baraya, K. A., Boryo, D. E. A., Chindo, I. Y., & Hassan, U. F. (2020). Formulation and Characterization of Green Adhesive Using Agricultural and Plastic Waste Materials as Composites. IOSR Journal of Applied Chemistry (IOSR-JAC).
Berczeli, M., & Weltsch, Z. (2021). Enhanced wetting and adhesive properties by atmospheric pressure plasma surface treatment methods and investigation processes on the influencing parameters on HIPS polymer. Polymers, 13(6), 901.
Bryaskova, R., Georgieva, N., Andreeva, T., & Tzoneva, R. (2013). Cell adhesive behavior of PVA-based hybrid materials with silver nanoparticles. Surface and Coatings Technology, 235, 186-191.
Chen, X., Sun, C., Wang, Q., Tan, H., & Zhang, Y. (2022). Preparation of glycidyl methacrylate grafted starch adhesive to apply in high-performance and environment-friendly plywood. International Journal of Biological Macromolecules, 194, 954-961.
Christenson, E. M., Anderson, J. M., Hiltner, A., & Baer, E. (2005). Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer, 46(25), 11744-11754.
do Nascimento, F. C., de Aguiar, L. C. V., Costa, L. A. T., Fernandes, M. T., Marassi, R. J., Gomes, A. D. S., & de Castro, J. A. (2021). Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents. Polymer Bulletin, 78(2), 917-929.
Ebewele, R. O. (2000). Polymer science and technology. CRC press.
Gharde, R. A., Mani, S. A., Lal, S., Khosla, S., & Tripathi, S. K. (2015). Synthesis and characterization of liquid crystal elastomer. Materials Sciences and Applications, 6(06), 527.
Hameed, N. J. (2016). Studying the effect of silica (SiO2) addition on the adhesive properties of polyvinyl alcohol. Iraqi Journal of Physics, 14(29), 107-124.
Henke, M., Lis, B., & Krystofiak, T. (2022). Evaluation of Surface Roughness Parameters of HDF for Finishing under Industrial Conditions. Materials, 15(18), 6359.
Hussein, S. I., Ali, N. A., Saleh, G. M., & Jaffar, H. I. (2019). Effect of fiber (Glass, poly propylene) on hardness, water absorption and anti-bacterial activity of coating acrylic polymer. Iraqi Journal of Science, (Special Issue) The Fourth Conference for Low Dimensional Materials and it's Applications-2018.
Hussein, S., Abd-Elnaiem, A., Ali, N., & Mebed, A. (2020). Enhanced thermo-mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) polymer blended with nanographene. Current Nanoscience, 16(6), 994-1001.
Jaafar, N. S. (2019). Clinical effects of Arabic gum (Acacia): A mini review. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 28(2), 9-16.
Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein Journal of Nanotechnology, 6(1), 529-536.
Kubo, M. T. K., Augusto, P. E., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170-179.
Kun, D., & Pukánszky, B. (2017). Polymer/lignin blends: Interactions, properties, applications. European Polymer Journal, 93, 618-641.
Mohammed, M. A., Jaber, M. A., & Al-Maamouri, A. F. E. (2022). Study and Evaluation of Rock Wool Board by using PVA/PU as a Polymer Blend Binder. Iraqi Journal of Science, 4282-4291.
Parameswaranpillai, J., Thomas, S., & Grohens, Y. (2014). Polymer blends: state of the art, new challenges, and opportunities. Characterization of Polymer Blends, 1-6.
etrović, Ž., Ristić, M., Musić, S., & Fabián, M. (2017). The effect of gum arabic on the nano/microstructure and optical properties of precipitated ZnO. Croatica Chemica Acta, 90(2), 135-143.
Sinkhonde, D. (2023). Quantitative study on surface porosity and roughness parameters of mineral and organic admixtures based on multi-scale characterisation techniques. Cleaner Materials, 7, 100166.
Suethao, S., Prasopdee, T., Buaksuntear, K., Shah, D. U., & Smitthipong, W. (2022). Recent Developments in Shape Memory Elastomers for Biotechnology Applications. Polymers, 14(16), 3276.
Sultan, M., Elsayed, H., Abdelhakim, A. E. F., & Taha, G. (2022). Active packaging gelatin films based on chitosan/Arabic gum/coconut oil Pickering nano emulsions. Journal of Applied Polymer Science, 139(1), 51442.
Sunday, O. O. (2015). Strength of adhesive bonded joints: Comparative strength of adhesives. International Journal of Engineering and Technical Research, 3(8), 58-62.
Tohry, A., Dehghan, R., Hatefi, P., & Chelgani, S. C. (2022). A comparative study between the adsorption mechanisms of sodium co-silicate and conventional depressants for the reverse anionic hematite flotation. Separation Science and Technology, 57(1), 141-158.
Vacher, R., & de Wijn, A. S. (2021). Molecular-dynamics simulations of the emergence of surface roughness in a polymer under compression. Materials, 14(23), 7327.
Vineeth, S. K., Gadhave, R. V., & Gadekar, P. T. (2020). Glyoxal cross-linked polyvinyl alcohol-microcrystalline cellulose blend as a wood adhesive with enhanced mechanical, thermal and performance properties. Mater Int, 2, 0277-0285.
Vlassov, S., Oras, S., Timusk, M., Zadin, V., Tiirats, T., Sosnin, I. M., Lõhmus, R., Linarts, A., Kyritsakis, A. & Dorogin, L. M. (2022). Thermal, mechanical, and acoustic properties of polydimethylsiloxane filled with hollow glass microspheres. Materials, 15(5), 1652.
Wang, S., Chen, M., & Cao, K. (2022). Polymer composite with enhanced thermal conductivity and insulation properties through aligned Al2O3 fiber. Polymers, 14(12), 2374.
Zhang, Y., Ding, L., Gu, J., Tan, H., & Zhu, L. (2015). Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydrate Polymers, 115, 32-37.