INVESTIGATION OF WETTABILITY, ANTIBACTERIAL ACTIVITY, THERMAL INSULATION, AND MECHANICAL CHARACTERISTICS OF ELASTOMER BLEND ADHESIVES WITH HIGH-DENSITY FIBERBOARD WOOD AND ALUMINUM

Main Article Content

Maha Majeed
Seenaa Hussein
https://orcid.org/0000-0002-8232-5823

Abstract

Attention has recently been given to finding alternative and sustainable raw material sources for wood and metal adhesives, such as polyvinyl alcohol (PVA), corn starch (CS), arabic gum (AG), and dextrins (D). Modifying polymer dispersion using  unique substances, such as modifying  reactive elastomer liquid (EL) using  PVA, CS, AG, or D results in sufficiently moisture-resistant adhesive joins. In the present study, the physical characteristics of EL/blended with the natural polymers PVA, CS, AG, and D, based on high-density fiberboard (HDF) wood and aluminum (Al) adhesives and coatings, were investigated and compared to those of pure EL. The EL was blended with PVA, CS, AG, or D at a ratio of 60/40 (w/w) to form EL/blends. The chemical structures, surface and interface morphology, adhesion strengths (including shear strength and pull-off strength), surface roughness, wettings, color intensity, and thermal insulation of the prepared EL and EL/blends were investigated. A scanning electron microscopy (SEM) investigation confirmed filler dispersion and adhesion between the blends, and coated HDF wood, or Al. The developed EL/AG blend had a pull-off strength of 144±5 and 102±3 MPa and a shear strength of 771±11, and 52±3 N with HDF wood and Al substrate, respectively. The EL/PVA blend had a maximum surface roughness value 4.57 µm, and its average water contact angle (WCA) was 85.6°. A plasma jet was used to treat the surface roughness and hence the wettability of the pure EL and the EL/blends, for example, plasma treatment decreased the roughness of the EL/AG blend from 4.36 to 3.28 μm. WCA, and hence wettability, was also significantly influenced by plasma treatment, for example, plasma treatment decreased the WCA of the pure EL from 71.7±0.4° to 30.7±0.7°. The lightness value of the EL/blends was less than that of the pure EL, indicating that (the color adhesives have darkened). Similarly, the yellowness-blueness and redness-greenness values of the EL/blends were greater than those of the pure EL,( rendering the blended adhesives more reddish and bluish). The EL/AG blend was found to have a minimum thermal conductivity (of 0.27 W/m.K), indicating maximum insulation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Majeed, M. ., & Hussein, S. (2024). INVESTIGATION OF WETTABILITY, ANTIBACTERIAL ACTIVITY, THERMAL INSULATION, AND MECHANICAL CHARACTERISTICS OF ELASTOMER BLEND ADHESIVES WITH HIGH-DENSITY FIBERBOARD WOOD AND ALUMINUM. Malaysian Journal of Science, 43(3), 86–97. https://doi.org/10.22452/mjs.vol43no3.10
Section
Original Articles

References

Abd-Elnaiem, A. M., Hussein, S. I., Ali, N. A., Hakamy, A., & Mebed, A. M. (2022). Ameliorating the Mechanical Parameters, Thermal Stability, and Wettability of Acrylic Polymer by Cement Filling for High-Efficiency Waterproofing. Polymers, 14(21), 4671.

Abdullah, A. Q. , Ali N. A. , Hussein , S. I., Hakamy, A., · Abd Elnaiem, A. M. (2023) Improving the Dielectric, Thermal, and Electrical Properties of Poly (Methyl Methacrylate)/Hydroxyapatite Blends by Incorporating Graphene Nanoplatelets . Journal of Inorganic and Organometallic Polymers and Materials, published online 28 may 2023.

Al Alawi, S. M., Hossain, M. A., & Abusham, A. A. (2018). Antimicrobial and cytotoxic comparative study of different extracts of Omani and Sudanese Gum acacia. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 22-26.

Ali, A. M., Jaber, M. A., & Toama, N. A. (2021). Thermal Properties of Polyester/Epoxy Blend. Iraqi Journal of Science, 1128-1134.

Ali, A. N. M., Ali, N. A., Hussein, S. I., Hakamy, A., Raffah, B., Alofi, A. S., & Abd‑Elnaiem, A. M. (2023). Nanoarchitectonics of silver/poly (methyl methacrylate) films: structure, optical characteristics, antibacterial activity, and wettability. Journal of Inorganic and Organometallic Polymers and Materials, 33(3), 694-706.

Ali, N. A., Abd-Elnaiem, A. M., Hussein, S. I., Khalil, A. S., Alamri, H. R., & Assaedi, H. S. (2021). Thermal and mechanical properties of epoxy resin functionalized copper and graphene hybrids using in-situ polymerization method. Current Nanoscience, 17(3), 494-502.

Al-Lhaibi, S. A., & Al-Shabander, B. M. (2022). Photocatalytic Activity and Wettability Properties of ZnO/Sawdust/Epoxy Composites. Iraqi Journal of Physics, 20(4), 54-65.

Almashhadani, N. J. H. (2021). UV-Exposure effect on the mechanical properties of PEO/PVA blends. Iraqi Journal of Science, 1879-1892.

Al-sharuee, I. F. (2019). Thermal conductivity performance of silica aerogel after exposition on different heating under ambient pressure. Baghdad Science Journal, 16(3 (Suppl.)), 0770-0770.

Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968.

AZEEZ, O. (2005). Production of Dextrins from Cassava Starch. Leonardo Journal of Sciences, (7), 9-16.

Baraya, K. A., Boryo, D. E. A., Chindo, I. Y., & Hassan, U. F. (2020). Formulation and Characterization of Green Adhesive Using Agricultural and Plastic Waste Materials as Composites. IOSR Journal of Applied Chemistry (IOSR-JAC).

Berczeli, M., & Weltsch, Z. (2021). Enhanced wetting and adhesive properties by atmospheric pressure plasma surface treatment methods and investigation processes on the influencing parameters on HIPS polymer. Polymers, 13(6), 901.

Bryaskova, R., Georgieva, N., Andreeva, T., & Tzoneva, R. (2013). Cell adhesive behavior of PVA-based hybrid materials with silver nanoparticles. Surface and Coatings Technology, 235, 186-191.

Chen, X., Sun, C., Wang, Q., Tan, H., & Zhang, Y. (2022). Preparation of glycidyl methacrylate grafted starch adhesive to apply in high-performance and environment-friendly plywood. International Journal of Biological Macromolecules, 194, 954-961.

Christenson, E. M., Anderson, J. M., Hiltner, A., & Baer, E. (2005). Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer, 46(25), 11744-11754.

do Nascimento, F. C., de Aguiar, L. C. V., Costa, L. A. T., Fernandes, M. T., Marassi, R. J., Gomes, A. D. S., & de Castro, J. A. (2021). Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents. Polymer Bulletin, 78(2), 917-929.

Ebewele, R. O. (2000). Polymer science and technology. CRC press.

Gharde, R. A., Mani, S. A., Lal, S., Khosla, S., & Tripathi, S. K. (2015). Synthesis and characterization of liquid crystal elastomer. Materials Sciences and Applications, 6(06), 527.

Hameed, N. J. (2016). Studying the effect of silica (SiO2) addition on the adhesive properties of polyvinyl alcohol. Iraqi Journal of Physics, 14(29), 107-124.

Henke, M., Lis, B., & Krystofiak, T. (2022). Evaluation of Surface Roughness Parameters of HDF for Finishing under Industrial Conditions. Materials, 15(18), 6359.

Hussein, S. I., Ali, N. A., Saleh, G. M., & Jaffar, H. I. (2019). Effect of fiber (Glass, poly propylene) on hardness, water absorption and anti-bacterial activity of coating acrylic polymer. Iraqi Journal of Science, (Special Issue) The Fourth Conference for Low Dimensional Materials and it's Applications-2018.

Hussein, S., Abd-Elnaiem, A., Ali, N., & Mebed, A. (2020). Enhanced thermo-mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) polymer blended with nanographene. Current Nanoscience, 16(6), 994-1001.

Jaafar, N. S. (2019). Clinical effects of Arabic gum (Acacia): A mini review. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 28(2), 9-16.

Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein Journal of Nanotechnology, 6(1), 529-536.

Kubo, M. T. K., Augusto, P. E., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170-179.

Kun, D., & Pukánszky, B. (2017). Polymer/lignin blends: Interactions, properties, applications. European Polymer Journal, 93, 618-641.

Mohammed, M. A., Jaber, M. A., & Al-Maamouri, A. F. E. (2022). Study and Evaluation of Rock Wool Board by using PVA/PU as a Polymer Blend Binder. Iraqi Journal of Science, 4282-4291.

Parameswaranpillai, J., Thomas, S., & Grohens, Y. (2014). Polymer blends: state of the art, new challenges, and opportunities. Characterization of Polymer Blends, 1-6.

etrović, Ž., Ristić, M., Musić, S., & Fabián, M. (2017). The effect of gum arabic on the nano/microstructure and optical properties of precipitated ZnO. Croatica Chemica Acta, 90(2), 135-143.

Sinkhonde, D. (2023). Quantitative study on surface porosity and roughness parameters of mineral and organic admixtures based on multi-scale characterisation techniques. Cleaner Materials, 7, 100166.

Suethao, S., Prasopdee, T., Buaksuntear, K., Shah, D. U., & Smitthipong, W. (2022). Recent Developments in Shape Memory Elastomers for Biotechnology Applications. Polymers, 14(16), 3276.

Sultan, M., Elsayed, H., Abdelhakim, A. E. F., & Taha, G. (2022). Active packaging gelatin films based on chitosan/Arabic gum/coconut oil Pickering nano emulsions. Journal of Applied Polymer Science, 139(1), 51442.

Sunday, O. O. (2015). Strength of adhesive bonded joints: Comparative strength of adhesives. International Journal of Engineering and Technical Research, 3(8), 58-62.

Tohry, A., Dehghan, R., Hatefi, P., & Chelgani, S. C. (2022). A comparative study between the adsorption mechanisms of sodium co-silicate and conventional depressants for the reverse anionic hematite flotation. Separation Science and Technology, 57(1), 141-158.

Vacher, R., & de Wijn, A. S. (2021). Molecular-dynamics simulations of the emergence of surface roughness in a polymer under compression. Materials, 14(23), 7327.

Vineeth, S. K., Gadhave, R. V., & Gadekar, P. T. (2020). Glyoxal cross-linked polyvinyl alcohol-microcrystalline cellulose blend as a wood adhesive with enhanced mechanical, thermal and performance properties. Mater Int, 2, 0277-0285.

Vlassov, S., Oras, S., Timusk, M., Zadin, V., Tiirats, T., Sosnin, I. M., Lõhmus, R., Linarts, A., Kyritsakis, A. & Dorogin, L. M. (2022). Thermal, mechanical, and acoustic properties of polydimethylsiloxane filled with hollow glass microspheres. Materials, 15(5), 1652.

Wang, S., Chen, M., & Cao, K. (2022). Polymer composite with enhanced thermal conductivity and insulation properties through aligned Al2O3 fiber. Polymers, 14(12), 2374.

Zhang, Y., Ding, L., Gu, J., Tan, H., & Zhu, L. (2015). Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydrate Polymers, 115, 32-37.