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Abstract 
Breast cancer (BC) is the leading cause of cancer mortality in females worldwide. Metabolomic approach 
has shown broad potential in recognizing the carcinogenic metabolites. This study aimed to systematically 
review cellular and clinical metabolomic studies in the past decade on BC. We summarized the pathways 
and metabolic biomarkers associated with BC. Scopus, PubMed, SAGE Journals, and Cochrane Library 
databases were searched for research papers on metabolomics of BC from January 2010 to January 2021. 
Two reviewers evaluated the data and study eligibility. The search identified 924 records. In total, 51 studies 
were included in the review (33 clinical and 19 cellular research) based on inclusion and exclusion criteria. 
Relevant data were extracted following the PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis) guidelines. The selected metabolomics studies analyzed tissue, serum, plasma, urine, and 
breath. A total of 21 metabolites (reported in ≥ 3 studies) were found to be prevalent in BC. Metabolite’s 
alterations involving glutamate, glutamine, lactate, choline, and taurine provide evidence of tumorigenesis. 
Glutaminolysis presented as the most significant pathway which highlighted the correlation of glutamine, 
glutamate, and glutaminase enzyme as potential biomarker for BC diagnosis. In conclusion, metabolomics 
enables in-depth identification of BC metabolic profile. The relative non-invasion and advantages of 
convenience in comparison with tissue biopsy and imaging screening, considered metabolomics as a 
relevant tool in early BC diagnosis. Collectively, this may lay foundation for understanding the progression 
and development of BC. 
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INTRODUCTION 

Breast cancer (BC) is changing the global landscape of 
cancer. Statistics released in December 2020 by the 
International Agency for Research on Cancer (IARC) 
reported that female BC has overtaken lung cancer as 
the most frequently diagnosed cancer worldwide, with 
an estimated 2.3 million newly diagnosed cases (1). It 
ranked first as the highest incidence cancer in 159 of 185 
countries and fifth as the leading cause of cancer 
mortality with 685,000 deaths based on the data from 
GLOBOCAN 2020.  

BC has primary molecular subtypes which can be 
categorized based upon their receptor status, including 
estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor (HER2). Based 
on gene expression profiling and immunohistochemistry 
analyses, these subtypes can be further categorized as 
luminal type A (ER-positive/PR-positive, HER2-negative), 
luminal type B (ER-positive/PR-negative, HER2-positive), 
HER2-enriched (ER-negative/PR-negative, HER2-positive) 
and basal-like (ER-negative/PR-negative, HER2-negative) 
(2) . 
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The pathophysiology of BC is multidimensional. It 
exhibited significant heterogeneity in disease and 
biological behaviour, in which different individuals could 
present with substantially different treatment-related 
toxicity and outcomes to treatment (3). Previous studies 
have evidenced that timely treatment and early 
diagnosis of BC could exert a significant outcome in 
improving the BC prognosis (4). Over the past decades, 
considerable progress has been made in the treatment 
and evaluation of patients with BC, leading to a nearly 
40% reduction in mortality due to the improvement of 
treatment and prevention strategies (5). Additionally, a 
study by Hadi et al., (2017) has reported that five-year 
survival rates can be improved to more than 90% by the 
early-stage diagnosis as compared to 15% in women 
diagnosed at an advanced stage of BC (6).  

However, the current management approach in 
metastatic and advanced BC is still limited due to the 
lack of available prediction markers for early detection 
of treatment effects and outcomes (3,4). As the most 
widely used markers for BC, neither the ER, PR nor HER2 
have satisfactory specificities and sensitivities for early 
diagnosis (4,5). Although annual screening of BC via 
digital mammography (DM) is considered an effective 
way to lower BC mortality in age-appropriate 
asymptomatic women, the sensitivity tends to rely on 
the tumor growth pattern and tissue density (7). Recent 
studies indicated that DM can potentially be replaced by 
the digital breast tomosynthesis (DBT) for early 
detection of BC, which demonstrated a prevalence 
sensitivity in the dense breast to some extent, however, 
this small-scale evidence concluded that it is still 
insufficient to confirm a shift from DM to DBT (6,8). 
Thus, novel convenient and effective techniques are 
urgently needed for early diagnosis of BC.  

Within this context, the alternative strategy for BC 
intervention is metabolomics, a discipline that allows 
measurement of endogenous metabolic substances in 
response to external or internal changes in the body 
(4,9). This technique identifies a specific set of 
metabolites in biological samples under normal 
condition in comparison with altered conditions caused 
by environmental modulation, drug treatment, diseases, 
or dietary intervention (9). This gives rise to the 
discovery of valuable biomarkers for early diagnosis of 
various cancers and served as an effective technique for 
personalized medicine (4, 7). 

  

MATERIALS AND METHODS 
Identification 

Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines as described by 
Liberati et al., 2009, comprise a four-phase flow diagram 
was applied in the study to screen and identify 
manuscripts related to metabolomic of BC (10). The 
diagram describes the identification, screening, 
eligibility, as well as the final included reports for the 
review (Figure 1). The first stage was the identification 
of journal articles. A systematic search was conducted 
on Scopus, PubMed, SAGE Journals, and Cochrane 
Library databases for relevant literatures published 
between 01/2010 up to 01/2021.  The advanced 
retrieval used the following search terms: (“decoding” 
OR “deciphering” OR “interpreting” OR “translating” OR 
“figuring out” OR “sorting out” OR “unraveling” OR 
“understanding” OR “comprehending” OR 
“investigating”) AND (“metabolome” OR “metabolomic” 
OR “metabolite”) AND (“breast cancer”). 
 
Screening 

The second stage was employed by screening the 
identified records. The studies were all imported into 
Mendeley (Elsevier, version 1.19.4) for screening and 
duplicate removal. This platform run an automated 
duplicates removal by screening into the records. The 
remaining records were independently extracted into a 
standard Excel file for screening based on title and 
abstracts. The abstracts of the selected titles were then 
carefully studied to ensure the suitability of the articles. 
 
Inclusion and exclusion criteria 

Selection of articles was based on the inclusion and 
exclusion criteria. The criteria were determined by 
consensus. Inclusion criteria were composed as: 
metabolomic study of breast cancer only, in-vivo, in-
vitro, clinical trial, and qualitative and quantitative 
analysis, published between 01/01/2010 to 31/01/2021, 
full-text articles, English written. Exclusion criteria were 
composed as: no association between BC and 
metabolome, metabolomic study of other cancers, 
review articles, conference proceedings, survey reports, 
comments, notes, or unpublished data, articles that do 
not met inclusion criteria. 
 
Eligibility 

In the stage of eligibility, studies were assessed using 
full-text articles. More specified information was 
extracted to decide the eligibility status. The data were 
narrowed down into the type of biological samples, 
type, and stage of BC, metabolites produced, metabolic 
pathways, as well as analytical and chemometric 
methods involved in determining the metabolites. The 
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articles were screened by the first author for relevance 
and reviewed by supervisor and co-supervisor. 
Subsequently, the non-eligible papers were excluded 
based on exclusion criteria: inadequate description on 
research methodology, focused on exogenous 
metabolites, no association between BC and 
metabolome, or ambiguous findings. 
 
Inclusion 
The final stage of systematic review was the inclusion of 
the eligible studies for data analysis. Previously collected 
data were summarized and presented in structured 
manner in the form of table, figure, or graph formats. 
The data were further divided based on the type of 
study (clinical or cellular), highest frequency 

metabolites, significant metabolic pathway, as well as 
summary of metabolomic study of BC. 
 

RESULTS  
In total, 924 articles were identified through the stated 
search strategy, and 866 remained after removal of 
duplicates. After screening, the titles, and abstracts of 
137 references were selected, using the stated inclusion 
and exclusion criteria, as potentially eligible studies. 
Finally, 51 articles were included in which further sub-
divided into 32 clinical research, 18 cellular research, 
and 1 clinical and cellular research. 
 

 

 
Figure 1: Flowchart of literature search 

 
Clinical and Cellular Research 
A total of 33 articles from clinical research and 19 from 
cellular research met the inclusion criteria in the final 
analysis, among which 14 studies were conducted with 
tissue, 13 with serum, 6 with plasma, 5 with urine, and 
1 with breath while 6 studies reported MDA-MB-231 
and MCF-7, 5 with MCF-10A, and 2 with BT-474 (Figure 
2A). MCF-10A, mentioned in 5 articles, was the most 

frequently used normal human breast cell lines in 
research. Whereas, both MDA-MB-231 and MCF-7 were 
adopted as the most commonly studied BC cell lines, 
followed by BT-474 in 2 studies. Clinical metabolomics 
studies based on mass-spectrometry accounted for 21 
studies, while 9 studies adopted NMR (Figure 2B). Four 
studies identified the metabolites by NMR, and the 
other 8 all adopted mass-spectrometry based 
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metabolomics for cellular research. Twenty studies 
were mainly targeted on specific metabolomes while 

the other ten were untargeted (Figure 2C).  
 

 
 

 

  
  
Figure 2: Characteristics of clinical and cellular research 

 
Six cellular based metabolomic studies were mainly 
targeted on specific metabolomes while the other eight 
were untargeted. In these diagnosis-related studies, 21 
high-frequency metabolites (reported in ≥ 3 studies) 
were recorded (Table 1). Glutamate with 10 hits in total 
has the highest frequency followed by glutamine at 9 
hits and lactate at 8 hits. Results showed that BC 
patients exhibited at least one up- or down-regulated 

metabolite from amongst 21 high-frequency 
metabolites quantified in various biological samples. 
For cellular studies, 4 high-frequency metabolites 
(reported in ≥ 3 studies). Notably, glutamate, 
glutamine, and lactate were upregulated in all three 
studies except for glucose: one upregulated and two 
downregulated. 
 

 
Table 1: High frequency metabolites in BC 
 

No. Metabolites 
Type 
of Studies 

Hits 
(Number of 
articles) 

Changing Direction in BC 

Up Down 
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1 Glutamate 
Clinical 10 

 

Plasma (2)(11,32) 
 

Serum (2)(16,17) 
 

Tissue (3)(12,25,26) 
 

Serum (2)(22,23) 
 

Tissue (1)(24) 

Cellular 3 Cell lines (2)(27–29) - 

2 Glutamine 
Clinical 9 

Plasma (1)(13) 
 

Serum (2)(16,23) 
 

Tissue (2)(34) 

Plasma (1)(32) 
 

Serum (1)(17) 
 

Tissue (2)(12,14) 
 
Urine (1)(30) Cellular 3 Cell lines (3)(27–29) - 

3 Lactate 
Clinical 8 Serum (4)(15–18) 

 
Tissue (2)(11,20) 

Serum (1)(23) 
 
Tissue (1)(26) 

Cellular 3 Cell lines (3)(27,28,39) - 

4 Glucose 
Clinical 7 

Serum (3)(22,23,38) 
 

Tissue (1)(14) 
Serum (3)(15–17) 
 

Cellular 3 Cell lines (1)(28) Cell lines (2)(37,39) 

5 Choline Clinical 7 
Serum (3)(7,18,38) 
 

Tissue (4)(14,21,26,34) 
- 

6 Creatine Clinical 7 
Serum (4)(15,17,19,43) 
 

Tissue (1)(19) 

Tissue (1)(26) 
 

Urine (1)(30) 

7 Tyrosine Clinical 7 

Serum (2)(17,19) 
 

Tissue (2)(19,26) 
 

Blood (1)(38) 

Serum (2)(16,23) 

8 Glycine Clinical 5 
Serum (2)(16,17) 
 

Tissue (2)(21,26) 
Urine (1)(30) 

9 Isoleucine Clinical 5 

Serum (3)(16,17,43) 
 

Blood (1)(38) 
 

Tissue (1)(21) 

- 

10 Phenylalanine Clinical 4 

 

Serum (2)(17,38) 
 

Blood (1)(38) 
 

Serum (1)(22) 

11 
Glycerophos-
phocholine 

Clinical 4 
Tissue (2)(14,21,26) 
 

Blood (1)(38) 
- 

12 Alanine Clinical 4 Serum (1)(17) 
Plasma (2)(13,16) 
 

Serum (1)(23) 
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13 Histidine Clinical 3 Serum (2)(17,43) Serum (1)(18) 

14 Leucine Clinical 3 
Serum (2)(16,17) 
 

Tissue (1)(21) 
- 

15 Citrate Clinical 3 
Serum (1)(17,23) 
 

Blood (1)(38) 
- 

16 
Phosphocholin
e 

Clinical 3 Tissue (3)(14,26,34) - 

17 Taurine Clinical 3 
Plasma (2)(32,42) 
 

Tissue (1)(26) 
- 

18 Proline Clinical 3 
Plasma (1)(13) 
 

Serum (1)(17) 
Serum (1)(18) 

19 Pyruvate Clinical 3 - 
Serum (2)(16,43) 
 
Tissue (1)(11) 

20 Valine Clinical 3 Serum (3)(7,41,43) - 

21 Acetoacetate Clinical 3 
Serum (1)(23) 
 
Blood (1)(38) 

Serum (1)(16) 

 
Analytical Approaches 
 
A general overview of the most common analytical 
instrumentation used in BC metabolomics was 
illustrated in figure 3A. In total, 30 studies conducted 
the metabolomic analysis of BC using MS-based 
approach while 12 adopted NMR. Figure 3B categorized 
four MS-based techniques used in the identified 
metabolomic study of BC and one NMR-based 
approach. Gas chromatography mass spectrometry (GC-
MS) was the most frequently reported with 25% of the 
studies applied this analytical approach and then closely  
 

followed by liquid chromatography mass spectrometry 
(LC-MS) with 21%, as well as tandem mass 
spectrometry (MS-MS) and time of flight mass 
spectrometry (TOF-MS) at 11% respectively. Overall, as 
compared to other analytical techniques, MS-based 
approach accounted for almost 70% (30 out of 44) of 
the identified studies. In all, thirteen studies performed 
NMR-based metabolomics on BC, among which 6 
studies analyzed serum samples, 4 with cell lines and 
tissues, 2 with plasma, and 1 with urine (Figure 3C). 
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Figure 3: Summary of analytical approaches in BC metabolomic studies 

 
Main Chemometric Methods 
In total, more than half (59%) of the identified 
metabolomic studies reported principal component 
analysis (PCA), partial least squares-discriminant 
analysis (PLS-DA), and orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) as the main 
chemometric methods used in the interpretation and 
analysis of BC metabolomic data. Two studies 
incorporated all three statistical techniques, nine used a 
combination of two (e.g., PLS-DA and PCA), and 
fourteen used only one type of chemometric method.  
 

DISCUSSION 

In this review, we performed a systematic analysis of 
cellular and clinical metabolomic studies on BC 
diagnosis. As a result, a series of potential biomarkers 
were summarized and reported. A total of 21 high-
frequency metabolites in clinical research (reported in 
≥3 studies) were listed, and some metabolic biomarkers 

(e.g., glutamate, glutamine, and glutaminase (GLS)) 
showed changing trends with glutaminolysis as the 
most significant pathway involved in the regulation of 
glutamate and glutamine, both in clinical and cellular 
studies (11–14). 

Based on cellular and clinical studies, we found that 
some significant metabolites (e.g., glutamate, 
glutamine, lactate, choline, leucine, creatine, histidine, 
and taurine) were repeatedly reported (15–18). 
Glutamine, histidine, tyrosine, and creatine showed 
significant changes in tissue (19–21). Glutamate and 
glutamine demonstrated the highest frequency of 
detection with 10 and 9 hits respectively, indicating the 
potential as a sensitive biomarker for BC diagnosis 
(16,17,30,22–29). Despite the inconsistent changing 
trend of both metabolites among the studies, majority 
of the studies acknowledged the significant elevation of 
glutamate influx was due to the increased glutamine 
catabolism (31–34).  
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According to Bhowmik et al., (2015), more than 1.5-fold 
accumulation of glutamate and glutamine was observed 
in cell lines expressing epithelial-mesenchymal 
transition (EMT) transcription factors (27). Both were 
substrate and product of glutaminolysis. This finding 
was further supported with reports by Cao et al., (2014) 
and Budczies et al., (2015) in which elevated levels of 
glutamate were associated with aggressive breast 
cancer subtypes (35,36). As for lactate, Bhowmik et al., 
(2015) demonstrated ≥ 3.5-fold increase (27). On the 
contrary, limited availability of glucose could result in 
reduced glycolysis which correlated with tumor 
aggressiveness by increasing stem-cell-like cells (SCLC) 
cell populations (22,37,38). 

Elevated lactate level, on the other hand, was described 
as one of the early findings of metabolic changes 
reported for BC (18,29,39). Lactate was known to be 
altered in the metastatic stage (40). The increased level 
was well correlated with Warburg effect as well as high 
demand for cellular proliferation (increased glycolytic 
activity resulted in more lactate production) (15). The 
high fold changes of lactate were associated with tumor 
cells' survival in which they increased the energy 
consumption by lactate production (Warburg effect) 
(20). 

Among the 21 metabolites, choline, isoleucine, 
glycerophosphocholine, leucine, taurine, and valine 
demonstrated consistent increasing trends 

41–43
. 

Choline, in particular, was one of the most prominent 
metabolites in which it could differentiate BC from 
tissues or normal cells (18,21,44). Choline was also 
invariably associated with increased proliferation of 
tumor cells in BC (14,18). It was also characterized as 
the signs for BC recurrence (40). Choline pathway 
specifically showed a significant increase of choline 
levels in BC tissues samples as compared to normal 
breast tissue samples (34).  

Glycerophosphocholine, a choline-containing 
metabolite also shared the same increasing trend 
specifically in ER-negative BC (26). Isoleucine on the 
other hand was shown to be upregulated in metastatic 
BC as compared to early BC(43). It was characterized 
with higher risk metabolomics profile together with 
glutamate and leucine. Leucine was characterized with 
higher risk metabolomics profile with no significant 
correlation with tumor stage (43). Citrate was elevated 
in serum TNBC samples (23). The increase was seen 
between the early BC and metastatic BC (45).  

Higher content of taurine suggested increase 
bioenergetics of tumor cells. Taurine showed 

antioxidant activity were increased in plasma from 
cancer subjects could be involved in protecting cancer 
cells from excessive damage by oxidative stress (42). In 
addition, the elevated content in taurine is also 
suggestive of increased utilization of the amino acid 
methionine, essential for the synthesis of methyl group 
donor compounds, the amino acid cysteine, and the 
antioxidant glutathione (46). Taurine was also found to 
be significantly elevated in the blood of BC patient 
which reflected its correlation with risk, response, and 
survival rate of cancer, as well as with the 
oncometabolite fumarate (32). It also correlated with 
the up regulation of arginine methyltransferase activity. 
ER-positive samples had higher levels of taurine (26). 

The alteration in glutamate and glutamine associated 
with the glutaminolysis pathway could be considered as 
another important hallmark in tumor metabolism 
besides the “Warburg effect” (12–15,31,32). According 
to Lampa et al., (2017), glutaminolysis was a vital step 
since it was rapidly consumed by cancer cells to fulfill its 
overwhelming metabolic demand (47). The intracellular 
processing of glutamine into glutamate by the enzyme 
glutaminase (GLS) followed with subsequent 
deamination into α-ketoglutarate (αKG), the 
intermediate of citric acid cycle served as an important 
source of nitrogen, carbon, and energy in tumor cells 
(11,47). 

Pathway analysis showed that glutaminase enzyme 
(GLS) played crucial role in the BC progression. Shah & 
Chen, (2020) emphasized that GLS overexpression 
allowed the increase of glutaminolysis metabolism, thus 
providing a means for the cancer cells to produce 
molecules needed for anabolic growth as well as 
replenish the tricarboxylic acid (TCA) cycle (31). The 
finding was further supported by Lampa et al., (2017) in 
which this study reported the significance of GLS gene 
in the survival and growth of TNBC tumors in vivo and in 
vitro (47). It was confirmed by the enhanced utilization 
of glutamine, high GLS to glutamine synthetase (GLUL) 
ratio, and increased glutamate to glutamine ratio. 

The key enzyme for glutamine metabolism was 
glutaminase isoenzymes GLS1 and GLS2. Interestingly, 
both isoenzymes have contrasting functions in cancer 
formation (48–51). The well-established glutaminolysis 
dependence in various types of cancers were linked to 
GLS1 isoforms. In particular, the GLS1 upregulation was 
correlated with increase tumorigenesis, while GLS2 
expression was often related to tumor-suppressing 
activity (51). 

According to Dias et al., (2020), the significant elevation 
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in the GLS level in BC patients might be indicative of the 
oncogenic or anti-oncogenic condition (49). High GLS1 
in TNBCs was correlated with poor prognosis and 
patients were dependent on the GLS activity and 
exogenous glutamine for survival (51). On the contrary, 
GLS2 upregulation in tumor cells promoted 
antiproliferative response with decreased formation of 
tumor cell colony in hepatocellular carcinoma (HCC) as 
well as cell cycle arrested at the G2/M phase (52). In 
few cell lines studies, the knockdown of GLS2 reduced 
glutamine-linked metabolic phenotypes and decreased 
cell proliferation (49,51). Of concern, GLS2 
overexpression or amplification was correlated to an 
overall, metastasis and disease-free survival in BC in 
which could be utilized as prognostic BC biomarker. 

Along with the heterogeneity of BC, metabolites in 
different patients could vary based on different 
samples. Overall, majority of the metabolites reported 
were obtained from serum and tissues samples (14–
16,18,20). A review by Stevens et al., (2019) reported 
that serum and plasma were the most commonly used 
blood fractions in metabolomic studies (53). Serum, in 
particular, has a higher level of metabolites (e.g., 
protein fragments and some peptides) as compared to 
plasma (54–56). Both Paglia et al., (2018), who utilized 
targeted approach, and Nishiumi et al., (2018) who 
utilized untargeted approach, suggested serum as 
biological samples with higher sensitivity (55,56). 
Analysis of tissues was equally important, as the tissues 
were the hub of metabolic turnover for diseases (57). 
By contrast, cellular studies have an advantage of 
avoiding the heterogeneity resulting from diverse 
samples. However, metabolites detected could also be 
fluctuant, which is induced by the incubation time and 
pH of mediums (4). 

Gas chromatography mass spectrometry (GC-MS) has 
been acknowledged as the gold standard in 
metabolomics study (58,59). Generally, GC–MS was 
considered a versatile analytical technique (60). This 
was because of its excellent separation capability, 
reproducibility, sensitivity, selectivity as well as 
robustness (59,61,62). In comparison with LC-MS, GC-
MS achieved better separation of metabolite and could 
generally avoid suppression of ion due to its MS 
ionization nature and the use of the gaseous phase for 
analysis (63). Somehow, the fact that this technique 
could only detect volatile compounds, as well as limited 
to ionizable metabolites served as inherent limitations 
for GC-MS (58).  

Tandem mass spectrometry (MS-MS) on the other hand 
could increase the precision and selectivity of 

compounds quantifications and identifications by 
providing additional information for comparison with 
databanks and structural elucidation (64). Instead of 
configuring with only one analyzer, two or more mass 
analyzers were possible in tandem mass spectrometers 
(MS/MS), allowing great utility including quantitative 
analysis, characterization of complex molecules, and 
compound identification (65). A study by Weiss & 
Schilsky, (2019) reported a recent metabolomic study 
that applied tandem mass spectrometry (MS-MS) on 
the identification of congenital disorders in newborns 
(66). MS-MS has markedly expanded the screening 
ability for 50 metabolic diseases by detecting the 
presence of specific metabolome in a single dried blood 
spot (DBS). Collectively, this study confirmed the 
practicality of using MS-MS in specific screening of 
Wilson disease in newborn. 

The wide applications of NMR in different samples 
including gas, liquid, and solid were explained by 
Emwas, (2015) and Kruk et al., (2017), in which NMR 
was mainly used in structural elucidation and molecular 
identification, as well as in the study of chemical and 
physical properties of molecules (e.g., molecular 
dynamics and electron density) (61,67). High-resolution 
magic-angle spinning (HRMAS) is fairly recently 
developed technique in NMR spectroscopy, whereby 
the applications were not only restricted to liquid and 
solid samples but also extended to intact tissue 
samples. Comparable resolution spectra could be 
obtained by spinning the tissue sample at a “magic 
angle” of 54.74° at high speed. HRMAS specifically 
allows spontaneous detection of tissue’s chemical 
composition with no pre-preparation steps required. In 
NMR-based metabolomics study, these methods 
provided correlation between bio-fluids metabolic 
profiles and specific histology of tissue samples. Hence, 
HRMAS NMR spectroscopy has been widely applied in 
metabolomic study of small intact tissues samples 
including kidney, brain, liver, as well as breast tissue.  

Choi et al. (2017) has reported a study to identify the 
correlations between metabolic profiles of core needle 
biopsy (CNB) specimens and the currently used 
molecular markers in patients with ER-positive BC by 
utilizing HRMAS magnetic resonance spectroscopy 
(HRMAS MRS) method (21). The metabolic profiles 
were compared according to HER2 and Ki-67 
(proliferation index) status. Tumors overexpressing 
HER2 have been found to be more aggressive with a 
high rate of recurrence and mortality, as this receptor 
plays a major role in promoting the growth of cancer 
cells (68). This further explains HER2 status remains 
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clinical importance as prognostic and predictive 
biomarkers especially for HER2-targeted therapies 
(69,70). In regard to OPLS-DA score and loading S-plots 
analyses of the HRMAS MRS spectra for HER2 status, 
high level of glutamate and glycine were detected in 
HER2-positive group when compared to HER2-
negative

54
.  

The aforementioned findings indicate that HER2-
positive BC had the highest glutamine metabolism 
activity in comparison to its counterpart (HER-negative). 
A similar observation was made whereby the high Ki-67 
group demonstrated higher levels of glutamate than 
the low Ki-67 group. It is important to note that Ki-67 is 
present in cells that are actively growing and dividing, 
which justifies it is commonly used as a proliferation 
marker in breast cancer (71). Breast cancer patients 
whose categorized under high Ki-67 group have a larger 
number of proliferating cells and are commonly 
associated with worse prognoses and worse survival 
rates (72). A noticeable increase in glutamate level in 
the high Ki-67 group, perhaps reflecting the greatest 
increase in glutamine metabolism (73)

.
 Considering the 

above-mentioned evidences, HRMAS MRS allows for 
direct measurement of non-liquid tissue and provide 
simultaneous insights of the chemical pathology 
relating to BC.  

Nevertheless, the primary limitation of NMR is linked 
with low sensitivity (61). Although important signal 
enhancement utilizing higher cryo-probes, digital signal 
processing, and magnetic fields improved the 
sensitivity, today’s NMR technology still cannot detect 
many low-abundances metabolites. For instances, only 
hundreds out of thousands detectable or measurable 
metabolites in biofluids reported as reliably detected by 
NMR (74–76). While metabolites with high abundance 
were frequently important, low abundance metabolites 
were similarly crucial for biomarkers diagnostic 
purposes.  

Furthermore, the overlapping resonances represented 
by proton NMR in metabolites quantification and 
identification in biofluids remained as another 
continuing challenges (61,77). In particular, the used of 
proton NMR in metabolomics studies produced narrow 
chemical shift dispersion and majority of the 
resonances were found in between 1 to 4 ppm. 
Significant challenges happened in compounds and 
peak assignment, especially at lower strengths 
magnetic field. Specifically, the spectral overlap 
problem and peak assignment’s reliability could be 
improved via 2-dimensional NMR (77). Somehow, 
despite the improved processing and signal acquisition 

techniques in 2D NMR, strong inertia remained exist 
which limits the applicability in metabolomic studies. 

Additionally, NMR-based techniques were expensive as 
compared to MS-based or many other frequently used 
analytical approaches (61,78). Besides, NMR 
instruments required substantial laboratory space 
isolated from radio and magnetic interference, 
nonvibrational floors, as well as highly skilled operators 
to handle the machines (61). These overriding issues 
have made it challenging in expanding NMR used in 
metabolomics fields. 

As evidenced by the predominant specificities and 
sensitivities in previous studies, metabolomics has 
shown advantages in the early diagnosis of BC (4). The 
use of metabolomics leads to the generation of a 
significant amount of data. With current high field 
spectrometer technology, visual analysis of NMR and 
MS is not an efficient means of interpreting biofluid 
spectra, because the high level of metabolic 
information represents a significant analytic challenge 
(61,79,80). Therefore,  as with other analytic platforms 
generating multivariate data (e.g., proteomics, 
genomics), automatic data reduction and chemometric 
approaches were used to enable efficient mining and 
extraction of information from large spectral 
metabolomic databases (80).  

Silva et al., (2019) in their urinary metabolomics study 
of BC, applied principal component analysis (PCA),  
partial least squares-discriminant analysis (PLS-DA), and 
orthogonal projections to latent structures discriminant 
analysis (OPLS-DA)  to the metabolites dataset to give 
insights on the group’s separations (i.e., 38 healthy 
controls and 40 BC patients) (30). As an unsupervised 
method, PCA was conducted to visualize the 
differences/similarities of the urine sample profiles 
between the groups. Particularly, samples were 
individually analyzed with no classification. The results 
observed a tendency of clusters formation between the 
groups explained by total variance of 54.6%. Next, PLS-
DA, a supervised method was applied to maximize the 
groups separation. Ten significant metabolites were 
identified: glutamine, glycine, creatine, trimethylamine, 
dimethylamine, serine, mannitol, α-hydroxyisobutyrate, 
trigonelline, and cis-aconitate (19). Then, OPLS-DA was 
applied to further maximize the BC and control groups 
separation by demonstrating the variable responsible 
for discrimination. As a result, a good separation was 
obtained with total variance of 54.8 % and average 
prediction accuracy more than 90%. Overall, the 
distinguished metabolomic patterns demonstrated a 
unique metabolite profile for each group.  



 
 
 
SPECIAL ISSUE   JUMMEC 2023: 1 

363  

CONCLUSION 

In conclusion, metabolomics enables in-depth 
identification of BC metabolic profile. Numerous studies 
have demonstrated potential metabolites for BC 
diagnosis. This review had systematically identified, 
screened, and analyzed 51 articles related to 
metabolomic of BC reported between 1st January 2010 
to 31st January 2021. Those articles were successfully 
classified based on the type of research, biological 
samples, analytical techniques, and main chemometric 
methods. A total of 21 high-frequency metabolites were 
studied for their prevalence in BC. Metabolite’s 
alterations involving glutamate, glutamine, lactate, 
choline, and taurine provide evidence of tumorigenesis. 
Glutaminolysis presented as the most significant 
pathway with GLS2 as potential biomarker for BC 
diagnosis. MS-based metabolomics provides an 
excellent approach as the most common analytical 
instrumentation used offering a combined selectivity 
and sensitivity platform for metabolomics study. PCA, 
PLS-DA, and OPLS-DA were significantly reported as the 
chemometric methods used in interpreting 
metabolomic databases. Even though there were some 
inconsistency and conflicts in these current studies, 
metabolomics still serves as great potential in early 
tumor stage identification in the future. The relative 
non-invasion and advantages of convenience in 
comparison with tissue biopsy and imaging screening, 
considered metabolomics as a relevant tool in early BC 
diagnosis. Collectively, the metabolomic of BC is still at 
an early stage, however it may lay foundation for 
understanding the progression and development of BC 
for BC treatment. 
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