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 Abstract
Genetic variation research indicates that 25% to 70% of body weight is determined by genetics. This study aimed to 
identify the influence of genetic variants on weight and biochemical data changes in participants who underwent 
a weight management program. A total of 30 obese participants were randomly assigned to either intervention or 
control groups. The study consisted of three phases: Phase I (pre-assessment), Phase II (intervention phase), and 
Phase III (post-assessment). The intervention and control groups were selected using block randomisation. The study 
involved 30 participants aged between 31 and 41 with a BMI of 32.8 ± 6.12 kg/m2. By examining the available data, it 
is possible to observe trends suggesting potential associations between certain genotypes and weight changes. Two 
specific variants, rs1726866 and rs1800497, significantly impacted glucose levels. Additionally, these two variants 
and another variant called rs1051168 were observed to influence cholesterol levels. These findings contribute to 
our understanding of the genetic factors that can potentially influence glucose and cholesterol metabolism and 
may have implications for personalised approaches to managing glucose and cholesterol-related conditions towards 
weight management programs.
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Introduction
Obesity has become a significant public health burden 
worldwide in recent years, with many people being 
overweight or obese. Out of 50.1% of Malaysian adults, 
30.4% were overweight, and 19.7% were obese (1). 
The prevalence of diet-related diseases and obesity are 
influenced by genetic and environmental factors such as 
over-nutrition and a sedentary lifestyle. Genetic variations 
can impact metabolic processes, including how the body 
utilises and stores energy from food. For example, certain 
variations in genes such as FTO (fat mass and obesity-
associated gene) and MC4R (melanocortin 4 receptor 
gene) have been associated with increased hunger, 
reduced satiety, and a higher preference for high-calorie 
foods. These variations can make it more challenging for 
individuals to control their food intake and contribute to 
weight gain and obesity. Genetic variations may predispose 
individuals to obesity and affect weight loss and weight 
management strategies for those who are overweight 
or obese (2). The concept of nutrigenomics has emerged 
as awareness of food modifications to reduce the risk of 
obesity-related diseases has increased. Nutrigenomics 

refers to the interactions between nutrition and lifestyle 
factors on genetic expression. Changes in eating patterns 
and lifestyles have made people increasingly vulnerable to 
diet-related issues (3).

A person’s risk for childhood obesity can increase if they 
have a family history of obesity. Studies have shown that 
parental obesity or overweight is associated with an 
elevated risk of childhood obesity, which can then be a 
predictor of adult obesity (4). Furthermore, research on 
genetic variation has demonstrated that approximately 
25%–70% of body weight is genetically determined, 
and more than 600 chromosomes may play a role in the 
heritability of obesity (5). Heritability accounts for 40% 
to 70% of the variance in body mass index (BMI). Various 
factors, including gene-diet interactions and genetic 
variations influenced by ethnicity, environment, disease/
condition, genes, genetic variants, or nutrients, can 
contribute to develop obesity-related diseases (6). The 
impact of a specific genotype on weight loss outcomes 
can vary significantly, even when different patterns of 
energy restriction or dietary changes are prescribed (5). 
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Nutrigenomics has generated considerable interest due to 
the potential for dietary modifications to improve health 
and reduce the risk of diet-related diseases (7). 

According to the Centre for Disease Control and Prevention 
(CDC), genetic factors play a crucial role in the body’s ability 
to adapt to environmental changes, and studies on family 
members, twins, and adoptees indicate that hereditary 
factors contribute significantly to variations in adult weight 
(8). Several genes, such as FTO, ADIPOQ, and MC4R, have 
been identified with variants that may increase the risk 
of obesity by influencing appetite and food consumption.

For instance, the fat mass and obesity-related gene (FTO, 
rs9939609) have been associated with a 30% higher risk 
of becoming overweight. FTO was the first obesity-related 
gene to be discovered, and research has revealed its 
association with obesity and an increased risk of various 
cancers across different racial groups using genome-wide 
association studies (GWAS) analysis (9).

GWASs have shed light on the role of genetic factors, 
including single nucleotide polymorphisms (SNPs), in an 
individual’s susceptibility to obesity. These studies examine 
genetic variations across the entire human genome, 
including SNPs, copy number variations (CNVs), and other 
structural variants, using whole-genome sequencing 
analysis conducted by international genome projects. 
Among these variations, SNPs are humans’ most common 
type of genetic variation (10).

Genetic factors, including specific gene variants and SNPs, 
have been identified as significant contributors to obesity 
susceptibility. The discovery of genes like FTO, along with 
advances in GWAS technology, has provided insights into 
the genetic underpinnings of obesity and its associated 
risks in diverse populations. This study aimed to identify 
the influence of genetic variants on weight and biochemical 
data changes in participants who underwent a weight 
management program.

Materials and Methods

Research design
An experimental design with an intervention-control 
approach was utilised for this study.

Study location
Health Clinic; Diet Care Centre, and Integrative 
Pharmacogenomics Institute, UiTM, Selangor Malaysia 

Sampling
The study used quota sampling to select the sample, which 
does not require a survey frame or a list of all members 
of the population of interest. A total of 30 participants 
were selected. The sample was divided into two groups, 
an intervention group and a control group, each with n=15 

participants, randomly assigned a number from 1-30 and 
equally divided into the two groups. To be eligible for 
participation in this study, individuals must meet certain 
inclusion criteria, which include being between 18 and 60 
years old, being able to understand either the Malay or 
English language, having a BMI of more than 27.5 kg/m2, 
and working, studying, or residing in Selangor. Participants 
must also be willing to take part in the study voluntarily. 
However, individuals diagnosed with chronic diseases or 
pregnant mothers will be excluded from the study.

Measurement
This study used various instruments, including a 
questionnaire to gather information on socio-demographic 
data and a Food Frequency Questionnaire (FFQ) to assess 
the participants’ dietary intake. Based on the information 
collected, the dietitian creates a personalised dietary plan 
for each participant. This plan considers their specific 
nutritional needs, caloric requirements, and weight 
management goals. The recommendations may include 
guidance on portion sizes, macronutrient distribution, meal 
planning, and food choices. The dietitian also educates the 
participants about the importance of balanced nutrition 
and offers practical tips for incorporating healthier food 
choices into their daily routines. Blood samples were 
collected for genotyping and biochemistry tests, such as 
fasting blood sugar (FBS) and fasting lipid profile (FLP).

Data collection
This study consisted of three phases, namely pre-
assessment (Phase I), intervention phase (Phase II), and 
post-assessment (Phase III), conducted over a period of 10 
weeks. Participants were briefed about the study protocol 
in Phase I and asked to provide their socio-demographic 
information. Their body weight was measured, and 
blood samples were collected to analyse FBS, FLP, and 
genotyping. Phase II involved the distribution of a food 
frequency questionnaire (FFQ) during the first week of 
the intervention phase to determine the participants’ 
dietary habits and lifestyles. The FFQ used was from the 
National Health and Morbidity Survey. In Phase III, weight 
measurements were taken, and blood samples were 
collected for FBS and FLP analysis. The difference between 
the pre and post-assessment was then evaluated.

Laboratory analysis

Glucose and Lipid Fasting Profile
The nurse or qualified phlebotomist collected six (6) ml of 
blood from each participant from the venous vein. After 
8 to 12 hours of fasting, blood was sampled. Participants 
were not allowed to eat or drink during the fasting period 
prior to the withdrawal of blood samples. Three (3) ml of 
blood was used for FLP, while another 3 ml was for FBS. 
All sample was analysed at the Department of Clinical 
Diagnostic Laboratories, UiTM Medical Specialist Centre. 
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Genotyping 
Five (5) ml of blood was collected from the participants’ 
venous veins. Genomic DNA was extracted from the EDTA 
anti-coagulated blood. Genotyping was conducted for all 
participants using validated allele-specific PCR assays. All 
samples were analysed at Integrative Pharmacogenomics 
Institute (iPROMISE), UiTM.

Ethical approval 
Ethical approval was obtained from the UiTM Research 
Ethics Committee ref.no: (REC/07/2021 (FB/46). 

Data analysis
The data from continuous variables were compared 
between the intervention and control groups using a 
two-sample t-test with independent samples. Pre- and 
post-intervention, the data of continuous variables were 
compared using paired samples T-test and two related 
sample tests. Normally distributed data were analysed by 
T-test. The non-parametric test was used to analyse data 
that was not normally distributed. Pearson or Spearman 
correlation was used to determine the correlation 
depending on the normality of the data. 

Results

Demographic characteristics of respondents 
Table 1 shows the mean and frequency of socio-demographic 
profiles of the participants for the intervention and control 
groups. The mean age of participants in the intervention 
group is 36.2 years, with a standard deviation of 4.90. This 
indicates that, on average, participants in this group are 
in their mid-thirties. In the intervention group, 50% of the 
participants are male, while the other 50% are female. In 
the control group, 46.7% are male, and 53.3% are female. 
These percentages indicate a relatively equal distribution 
of gender in both groups. The mean BMI in the intervention 
group is 32.8, with a standard deviation of 6.12. BMI is a 
measure of body fat based on height and weight, and a 
BMI of 32.8 suggests that, on average, participants in the 
intervention group are in the obese range.

Table 1: Demographic data 

Socio-
demographic 
category

Interventions 
group 
n (%)

Control 
group 
n (%)

Mean (SD)

Age 36.2 (4.90)

Gender
Male
Female

5 (33.3)
10 (66.7)

7 (46.7)
8 (53.3)

Body Mass Index 
(BMI) 32.8 (6.12) 

Dietary and pre-biochemical data between 
intervention-control group 
Variations in the frequency of eating or drinking and the 
different types of meals or liquids between the control and 
intervention groups were compared (Table 2). Based on 
the findings, most dietary intake is low to moderate, with 
only vegetable intake high. 

Table 2: Frequency of foods or drinks consumption

Intervention Control

Frequency of Foods or 
Drinks Consumption Mean±SD Mean±SD pc

N 15 15

Cereals and cereals 
product (meals/week)a 2.87±1.13 3.08±0.99 0.97

Fast food consumption 
(meals/week)b 2.79±2.42 2.71±1.07 0.69

Meat and meats product 
(meals/week)b 2.42±1.74 3.36±1.80 0.15

Fish and sea foods 
(meals/week)a 2.77±1.70 3.49±1.64 0.26

Eggs (eggs/week)b 1.97±1.30 2.45±1.69 1.00

Legumes and legumes 
product (cups/week)b 2.85±1.53 1.96±1.37 0.24

Milk and milk products 
(glasses/week)b 2.34±1.89 2.47±1.90 0.74

Vegetables (cups/week)b 5.24±3.99 7.55±7.01 0.97

Fruits (cups/week)a 3.21±1.99 2.66±1.13 0.58

Drinks (glasses/week)b 1.42±0.79 2.07±1.67 0.79

Confectioneries (meals/
week)b 3.72±2.59 2.60±1.20 0.92

Bread spreads 
(tablespoons/week)b 1.49±0.92 1.49±0.96 0.55

Flavors/ seasoning 
(tablespoons/week)a 3.32±1.72 3.73±2.05 0.40

a two-sample independent test.
b Man-Whitney Test.
c p-value, statistical significant p < 0.05

Correlation between pre-biochemical and post-
biochemical data and dietary habit
Table 3 shows an analysis of the correlation between 
dietary habits and pre-biochemical and post-biochemical 
data by Pearson’s correlation coefficient to determine 
the correlation between the variables involved. In the 
correlation analysis, the correlation of the data can be 
described as strong, moderate, fair and weak depending 
on its r and rs values. The strong association indicate when 
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the r value > 0.75, followed by moderate 0.50 < r < 0.75, 
fair 0.25 < r < 0.50 and weak is when the r < 0.25.

Correlation of genetic variant with biochemical 
data and weight
Table 4 displays the distribution of weight and biochemical 
data pre-and post-test, categorised based on the genotypes 
of each SNP. The SNP rs1726866, associated with eating 
disinhibition, exhibits a notable difference in glucose levels 
between individuals with GG and GA alleles. Moreover, 
individuals with the GG genotype have higher cholesterol 
levels than those with the AA genotype. The GG allele for 
rs1800497 significantly affects glucose and cholesterol 
levels. In contrast, the pre-and post-test results show 
that individuals with the TT allele for rs9939609 have 
considerably lower cholesterol levels. Concerning obesity 
genotyping, individuals with CC alleles for rs17782313 have 
a significantly higher value for HDL levels in the pre-test 
of biochemical data than those with TT and TC alleles. 
However, there is no significant difference between the 
individual’s genotyping and weight and biochemical data 
before and after the post-test for the other alleles.

Discussion
The genetic variations section of the study encompasses 
14 types of genotyping that impact changes in biochemical 
data and weight between the two groups studied. Research 
has consistently shown that incorporating whole grains into 
one’s diet reduces the risk of non-communicable diseases, 
including obesity, cardiovascular disease, type 2 diabetes, 
and colorectal cancer (10). On the other hand, consumption 
has been found to have limited or even detrimental effects 
on health outcomes. Studies have demonstrated that 
a higher intake of cereal or cereal products, especially 
those made from processed grains, is often associated 
with elevated glucose levels. Additionally, a higher intake 
of refined grains can raise blood sugar levels, especially 
in individuals already diagnosed with diabetes mellitus. 
However, based on the study’s findings, there is only a 
fair and modest association between grain consumption 
and biochemical value, suggesting no correlation between 
grain intake and biochemical value. Although cereals may 
satisfy our sweet cravings, they also sabotage glucose 
levels. Many popular kinds of cereal have refined grains 
and sugars as their top ingredients, which provide little 
nutritional value and high empty calories that can increase 
blood glucose levels.

Additionally, previous research has shown strong evidence 
linking sugar-sweetened beverages to weight gain or 
obesity in children and adolescents (11). Our study also 
found a significant association between the consumption 
of sweetened beverages and triglyceride levels. 

Previous research findings suggest that many individuals 
consume protein higher than the recommended daily 
allowance (RDA). This higher protein intake aligns with 
recommendations to promote muscle health, regardless 

of an individual’s body weight or intake of calories, 
carbohydrates, or fats. Moreover, increased dietary protein 
consumption has been associated with a reduced risk of 
cardiometabolic disorders, particularly in individuals with 
obesity. Those who follow a diet rich in protein tend to have 
a lower body mass index (BMI) and waist circumference, 
along with higher levels of high-density lipoprotein (HDL) 
cholesterol than those who consume protein at the RDA 
level. These findings highlight the potential benefits of 
incorporating higher protein intake into a balanced diet 
for improved body composition and metabolic health (12).

The study reports that higher consumption of red meat was 
associated with an increased risk of hypercholesterolemia, 
hyper-LDL cholesterolemia, and dyslipidemia in both men 
and women, with a 34% and 10% increase in the risk of 
hypercholesterolemia, respectively. Similarly, a 58% and 
17% increase in the risk of hyper-LDL cholesterolemia and 
dyslipidemia was observed in men consuming red meat. 
Processed meat intake was also associated with an increased 
risk of hypercholesterolemia, hypertriglyceridemia, and 
dyslipidemia in both men and women, with a 38% and 9% 
increase in the risk of hypercholesterolemia, respectively 
(13). The findings suggest that consuming meat and meat 
products can substantially increase cholesterol and LDL 
levels and validate the conclusions of prior research.

Based on the current study, egg intake has only a moderate 
correlation with triglyceride and LDL levels. In contrast, 
a previous study (14) found that consuming eggs can 
increase total cholesterol, LDL, and HDL levels. However, 
there was no significant influence on the LDL: HDL, TC: HDL, 
or triglyceride concentrations. The heterogeneity among 
studies may be due to differences in study design and 
participant response to dietary cholesterol. Additionally, 
the current study suggests that the moderate intake of 
meat, meat products, and eggs may not have a strong 
association with biochemical effects.

A negative correlation exists between vegetable intake 
and the two variables under consideration. A negative 
correlation means that when one variable increases, 
the other decreases, or vice versa. Evidence suggests 
that fruits and vegetables are associated with a lower 
risk of cardiovascular diseases, such as high blood 
pressure, cholesterol, triacylglycerol, and soluble fiber. 
As the average intake of vegetables is high, we might 
expect a significant correlation between vegetable intake 
and changes in biochemical data. However, since the 
correlation is insignificant, we may conclude that there is 
no substantial linear relationship between the population’s 
biochemical data and vegetable intake (15).

The study revealed that the consumption of certain food 
categories was moderate to low, suggesting that the impact 
on biochemical values is likely to be minimal. However, 
high consumption of these food categories can significantly 
affect the values, particularly in individuals with underlying 
conditions such as diabetes mellitus, hyperlipidemia, 
or hypercholesterolemia. For those without underlying 
conditions, their values may not vary much after consuming 
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Table 4: Mean pre and post-test of biochemical data and weight for all the participants involved

Genotyping
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rs1726866a

GG 5.65 *5.62 6.57 *6.20 1.5 1.46 1.73 1.28 4.33 4 31.33 29.33

GA 5 *5.00 5.15 4.72 1.53 1.58 0.99 0.74 3.2 3 34.1 33.6

AA 4.93 5.04 5.31 5.38 1.41 1.55 1.1 1.07 3.33 3.33 32.89 32.89

rs1800497a

GG 5.33 *5.45 6.89 *5.33 1.34 1.36 1.74 1.18 5 3.5 32 30.75

GA 5.09 5.1 5.07 5.17 1.48 1.49 1 0.86 3.07 3.36 34.79 34.36

AA 4.69 4.76 5.14 5.1 1.62 1.94 1 1.02 3 2.75 29 29

rs1051168a

GG 5.66 5.48 4.12 4.38 1.51 1.5 1.07 0.81 3.8 2.5 34 33

GT 5.06 4.96 5.87 5.25 1.43 1.42 1.32 0.94 3.78 3.6 33.4 33.8

TT 4.97 5.1 5.43 5.28 1.5 1.6 1.09 0.97 3.47 3.27 33.07 32.33

rs9939609b
TT 5.16 5.06 *5.68 *5.51 1.43 1.49 1.24 1.06 3.77 3.69 32.46 32.15

TA 4.91 5.16 5.03 4.73 1.56 1.64 0.98 0.77 2.89 2.67 34.33 33.56

rs2025804 GA 5.06 5.1 5.41 5.2 1.48 1.55 1.13 0.95 3.41 3.27 33.23 32.73

rs5400
GG 5.08 5.1 5.29 5.3 1.52 1.57 1.06 0.96 3.29 3.35 32.53 32

GA 5 5.07 5.83 4.83 1.36 1.48 1.41 0.9 3.8 3 35.6 35.2

rs4680b
GG 5.08 5.08 5.47 5.04 1.51 1.56 0.83 0.9 3.5 3.19 34.31 33.81

GA 5 5.15 5.26 5.6 1.4 1.52 1.09 1.07 3.17 3.5 30.33 29.83

rs8179183 GG 5.06 5.1 5.42 5.19 1.48 1.55 1.14 0.95 3.41 3.27 33.23 32.73

rs17782313a TT 5.01 5.06 5.35 5.36 1.45 1.54 1.08 0.96 3.23 3.38 32 31.69

TC 5.24 5.2 5.47 4.57 1.32 1.37 1.33 0.98 3.8 3 34.4 33.6

CC 5 5.1 5.56 5.42 *1.79 1.8 1.09 0.85 3.5 3.25 35.75 35

rs17366568 GG 5.06 5.1 5.42 5.2 1.5 1.55 1.14 0.95 3.41 3.27 33.23 32.73

rs4994b AA 4.99 5.09 5.42 5.22 1.44 1.51 1.14 0.98 3.42 3.32 33.11 32.63

AG 5.51 5.19 5.38 4.99 1.77 1.76 1.07 0.76 3.33 3 34 33.33

rs17300539 GG 5.06 5.1 5.41 5.19 1.5 1.55 1.14 0.94 3.41 3.27 33.23 32.73

rs1801282b CC 5 5.09 5.3 5.13 1.51 1.58 1.07 0.93 3.3 3.2 32.9 32.4

CG 5.6 5.26 6.61 5.72 1.18 1.22 1.76 1.11 4.5 4 36.5 36

rs7903146 CC 5.05 5.11 5.43 5.21 1.47 1.53 1.16 0.97 3.43 3.29 33.52 33

Abbreviation: Glu = Glucose; Chol = cholesterol; Tri = triglyceride; Wt = weight.
A one-way ANOVA/Kruskal-Wallis Test.
b T-test/Man Whitney test.
* significance, p < 0.05.

any meal. It is essential to note that the data was obtained 
through an FFQ, and any inaccuracies in completing 
the questionnaire may result in significant variations in 
the variables. Therefore, a better understanding of the 
questionnaire’s completion procedures are critical in 
determining the association.

Several studies in human nutrition have demonstrated 
that TAS2R38 polymorphisms may affect food intake and 
nutritional status (16). The TAS2R38 gene is associated with 
food aversion and has a bitter taste. Individuals with GG 

and GA allele profiles often have a modified perception of 
bitter foods such as broccoli and cabbage and drinks like 
coffee. Super-tasters are less likely to enjoy leafy greens, 
broccoli, Brussels sprouts, dark chocolate, bitter beverages, 
dark roast coffee, and hot peppers, suggesting they cannot 
stop eating in response to stimuli. This variation in taste 
perception can lead to eating disinhibition. Individuals 
with the AA allele profile cannot tolerate bitter flavours, 
leading them to avoid bitter foods like vegetables and 
coffee. The study found that the control group consumed 
more vegetables than the experimental group. The results 
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show no significant changes in biochemical data between 
pre- and post- between the two groups. Weight reduction 
was recorded between the pre- and post-test. This may 
be due to other external factors such as education and 
socioeconomic status, family or peer influences, and other 
factors that affect how they eat and indirectly affect the 
participant’s biochemical value and weight (17).

A previous study found that individuals homozygous for 
the TAQ1A polymorphism (rs1800497) had lower body fat 
and central adiposity, even after accounting for established 
variables affecting body composition. A dietary pattern 
characterised by increased energy consumption and a 
larger proportion of calories from sugar may contribute 
to the less healthy phenotype found in those carrying 
two TAQ1A risk alleles (18). However, the current study’s 
results show a significant mean for TG in the intervention 
group and HDL value for the control group without 
significantly affecting other lipid profiles. While previous 
research suggests that carrying two alleles increases 
sugar consumption, the results of this study contradict 
that finding, as both groups consumed sweet foods and 
beverages in small amounts. It is essential to note that 
preliminary analysis suggests a larger sample population 
is needed to validate the TAQ1A allele’s outcome.

The NMB (rs1051168) gene has been found to influence 
satiety signals. It has been linked to dietary disinhibition, 
sensitivity to hunger, and changes in fat mass. Previous 
study by Dotson et al. (19) has suggested that NMB 
may regulate eating behaviour and affect body weight. 
However, the results of this study indicate that individuals 
who carry homozygous NMB alleles only showed a small 
change in biochemical data and no significant differences 
in biochemical or weight measurements for both groups 
studied.

The FTO (rs9939609) gene is linked to how our bodies 
respond to different types of fats. People with this gene’s 
TT and TA variations tend to do well on diets high in 
unsaturated and low in saturated fats. However, those 
with the AA variation usually have a more typical fat 
metabolism and are at a higher risk of obesity. This study 
confirms previous research that shows individuals with 
the A-A genotype have a higher risk of obesity than those 
with the A-T and T-T genotypes. Another study found that 
the FTO rs9939609 A-A genotype was more common in 
obese individuals than those with normal weight (20). Both 
groups in the study engaged in physical activity. However, 
there was a significant difference in the intervention and 
biochemical control values for people with the TT allele. 
This finding aligns with previous research on the AA allele, 
as no participants in the study had the AA allele.

The rs5400 gene is commonly associated with a preference 
for food high in sugar. Individuals with the GG allele 
typically have a strong preference for sugary food. In 
contrast, those with the GA allele have a slightly increased 
preference. However, in this study, both groups consumed 
only a moderate amount of sugary food and drink. External 
factors such as socioeconomic status or culture may have 

influenced dietary intake and obscured the trait of carrying 
these alleles. Furthermore, because all participants had 
only the GA and GG alleles, the reliability of the assertion 
is limited compared to individuals with the AA allele.

Homozygous individuals for the rs4680 allele (GG) have 
an increased tendency to overeat, as they struggle to feel 
full after eating, which can lead to obesity. However, the 
dietary intake scores for both groups in this study were 
only in the low to moderate range for all food categories. 
Therefore, it cannot fully support the genotype description. 
Additionally, while there were changes in the values of 
biochemical data and weight for the intervention group, 
there were only slight changes in biochemical values for 
the control group.

The MC4R gene, commonly associated with obesity, 
was also examined. The rs17782313 single nucleotide 
polymorphism in the MC4R gene has been debated 
regarding its role in obesity (21). Homozygous or compound 
heterozygous MC4R variations are associated with a 
higher prevalence of severe obesity than heterozygous 
variants, suggesting a codominant inheritance pattern 
(22). The analysis revealed that individuals with the CC 
allele are more likely to have a higher body mass index 
than those with the CT and TT alleles. The impact of the 
CT and TT alleles on body mass index remains unclear due 
to insufficient evidence. The analysis also showed that 
participants with the CC allele had a greater weight than 
those with the CT or TT alleles. 

The ADRB3 gene, like the MC4R gene, is often associated 
with obesity. However, there is still uncertainty about the 
genetic impact of the ADRB3 rs4994 polymorphism on 
childhood and adolescent overweight/obesity, despite 
previous intervention studies (23). An individual with 
the AA allele has only the typical risk of childhood and 
adolescent overweight/obesity. On the other hand, those 
with the AG allele are more likely to have an increased risk 
of childhood and adolescent overweight/obesity. However, 
the intervention group participants’ results challenge this 
assumption by showing lower weight than individuals with 
the AA allele. The assertion can be supported by the fact 
that the mean value of participants in the control group 
carrying the AG allele is higher than those with the AA 
allele. This suggests that the intervention received by the 
participants in the intervention group, which involved 10 
weeks of module advice, may have contributed to the 
difference in mean values observed between the two 
groups.

The rs1801282 genotype is commonly associated with the 
risk of obesity. Evidence suggests that the PPARG SNPs, 
which are nuclear receptors, play a significant role in 
regulating glucose and lipid metabolism (24). Homozygous 
carriers of the GG allele are believed to have a higher risk 
of increasing their body mass index. However, weight loss 
and a reduction in body fat percentage can be achieved 
by consuming monounsaturated fats. However, the 
study’s findings indicate that both groups only consist of 
individuals carrying the CC and CG alleles, which confer 
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a slightly elevated risk of increasing body mass index, 
with monounsaturated fats aiding in weight loss. Results 
demonstrate that participants carrying the CC allele have 
experienced changes in their lipid profile and glucose 
levels in both groups. However, those carrying the CG 
allele showed no significant changes in their mean values.

The genetic variant rs7903146 is associated with BMI 
and relates to type 2 diabetes risk. Individuals carrying 
the TCF7L2 rs7903146 TT genotype and who are obese 
have a 2.62-fold increased risk of developing type 2 
diabetes compared to individuals with other genotypes 
(25). The analysis also revealed that both allele carriers 
in the intervention group experienced weight changes. 
However, as the control group only includes individuals 
with the CC allele, no differences were observed in this 
group. Participants with the CT allele had lower glucose 
levels than those with the CC allele. Moreover, based on 
the biochemical data, both groups’ fasting blood glucose 
values are within the normal range. 

Conclusion
In conclusion, we can see patterns that suggest connections 
between specific gene types and changes in weight. 
Two specific gene variants, rs1726866 and rs1800497, 
significantly affected glucose levels. Furthermore, these 
two variants and another variant called rs1051168 were 
found to influence cholesterol levels. These discoveries 
enhance our knowledge of genetic factors that can impact 
glucose and cholesterol metabolism and could have 
implications for tailoring approaches to managing glucose, 
cholesterol, and weight conditions in personalised weight 
management programs. 
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