Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: A Review

Authors

  • Abu Hashem University of Malaya
  • Ibrahim Khalil Healthcare Pharmaceuticals Limited, Gazariapara, Mirzapur Bazar, Rajendrapur, Gazipur-1703, Bangladesh
  • Al Mamun aNanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
  • Shalauddin
  • M. A. Motalib Hossain
  • Marlinda
  • Khanom
  • Mohd Rafie Johan

DOI:

https://doi.org/10.22452/mnij.vol2no1.2

Keywords:

Biomolecules; Biosensor; Functional; Macromolecules; Nanocellulose

Abstract

Cellulose is a group of materials that can be made into low-cost devices because they are the most common biomaterials in nature. Cellulose-based polymers are flexible, biocompatible, biodegradable, and easy to functionalise and mass produce. Cellulosic substrates are attractive biosensing platforms because of their unique properties, exceptional simplicity, and compatibility with standard technologies. Furthermore, cellulose-based biosensing approaches can meet the following criteria for optimal diagnostic assays or devices: real-time connectivity; simplicity of specimen collection; affordability; specificity; sensitivity; user-friendliness; speed and robustness; and deliverability to end-users. As a result, cellulose is suitable for constructing novel analytical devices in the biosensing community. The use of cellulose as a nano-engineered matrix material has enabled recent advancements in biosensors. Several methodologies for producing cellulose-based composites for the fabrication of various biosensors have been described and reviewed. Biological macromolecules have immense importance in genetic and pathogenicity detection. Likewise, there are many research reports, but there is a gap regarding review in this area of biological macromolecule detection like nucleic acids and proteins. This study looked at this previously unexplored area as well as the unique features that make it a good choice for biosensing applications and the engineering features of cellulose-based biosensors. It also looked at how different analytical systems have used such matrices to detect biological macromolecules (DNA, proteins, and RNA) in different samples.

Downloads

References

A. Gumrah Dumanli, Nanocellulose and its composites for biomedical applications. Curr. Med. Chem. 24(5), 512-528 (2017).

M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, and H. Arshad, Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J. Mater. Res. Technol. 14, 2601-2623 (2021).

S. Tortorella, V. V. Buratti, M. Maturi, L. Sambri, M. C. Franchini, and E. Locatelli, Surface- modified nanocellulose for application in biomedical engineering and nanomedicine: A review. Int. J. Nanomed. 15, 9909–9937 (2020).

H. H. Hsu, and W. Zhong, Nanocellulose-based conductive membranes for free-standing supercapacitors: a review. Membranes 9(6) 74 (2019).

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, Nanocelluloses: a new family of nature‐based materials. Angew. Chem. Int. Edit. 50(24) 5438-5466 (2011).

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941-3994 (2011).

C. S. K. Lawrence, S. N. Tan, and C. Z. Floresca, A “green” cellulose paper based glucose amperometric biosensor. Sensor. Actuat. B-Chem. 193, 536-541 (2014).

D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, and H. Yu, Cellulose‐based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28) 2000619 (2021).

Y. Oishi, M. Nakaya, E. Matsui, and A. Hotta, Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Compos. Part A- Appl. S. 73, 72-79 (2015).

M. G. Ramezani, and B. Golchinfar, Mechanical properties of cellulose nanocrystal (cnc) bundles: Coarse-grained molecular dynamic simulation. J. Compos. Sci. 3(2), 57 (2019).

F. G. Torres, O. P. Troncoso, K. N. Gonzales, R. M. Sari, and S. Gea, Bacterial cellulose‐ based biosensors, Medical Devices & Sensors, 3(5), e10102 (2020).

A. Baranwal, K. Mahato, A. Srivastava, P. K. Maurya, and P. Chandra, Phytofabricated metallic nanoparticles and their clinical applications. RSC Adv. 6(107), 105996-106010 (2016).

K. Ratajczak, and M. Stobiecka, High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohyd. Polym. 229, 115463 (2020).

A. K. Dhara, and A. K. Nayak, Biological macromolecules: sources, properties, and functions. Biological Macromolecules. 3-22, Elsevier, 2022.

L. Zhang, S. Wan, Y. Jiang, Y. Wang, T. Fu, Q. Liu, Z. Cao, L. Qiu, and W. Tan, Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J. Am. Chem. Soc. 139(7), 2532-2540 (2017).

A. Hashem, M. A. M. Hossain, A. R. Marlinda, M. Al Mamun, S. Sagadevan, Z. Shahnavaz,

K. Simarani and M. R. Johan, Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit. Rev. Cl. Lab. Sci. 59(3), 156-177 (2021).

M. Al Mamun, Y. A. Wahab, M. M. Hossain, A. Hashem, and M. R. Johan, Electrochemical Biosensors with Aptamer Recognition Layer for the Diagnosis of Pathogenic Bacteria: Barriers to Commercialization and Remediation. TrAC-Trend. Analyt. Chem. 145, 116458 (2021).

A. Hashem, M. M. Hossain, A. R. Marlinda M. Al Mamun, K. Simarani, and M. R. Johan, Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: A review. Appl. Surf. Sci. Adv. 4, 100064 (2021).

I. Khalil, A. Hashem, A. R. Nath, N. Muhd Julkapli, W. A. Yehye, and W. J. Basirun, DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations. Mol. Cell. Probes. 59, 101758 (2021).

C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 87(1), 230-249 (2015).

C. Zhu, and S. Dong, Energetic graphene‐based electrochemical analytical devices in nucleic acid, protein and cancer diagnostics and detection. Electroanalysis 26(1), 14-29 (2014).

A. Walcarius, S. D. Minteer, J. Wang, Y. Lin, and A. Merkoçi, Nanomaterials for bio- functionalized electrodes: recent trends. J. Mater. Chem. B. 1(38), 4878-4908 (2013).

J. Lei, and H. Ju, Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 41(6), 2122-2134 (2012).

D. Du, Z. Zou, Y. Shin, J. Wang, H. Wu, M. H. Engelhard, J. Liu, I. A. Aksay, and Y. Lin, Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem. 82(7), 2989-2995 (2010).

R. Moon, MacGraw-Hill Year Book of Science and Technology. McGraw-Hill, 2008.

P. Joseph, K. Joseph, and S. Thomas, Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos. Sci. Technol. 59(11), 1625-1640 (1999).

A. Bledzki, and J. Gassan, Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221-274 (1999).

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479-3500 (2010).

S. Camarero‐Espinosa, D. J. Boday, C. Weder, and E. J. Foster, Cellulose nanocrystal driven crystallization of poly (d, l‐lactide) and improvement of the thermomechanical properties. J. Appl. Polym. Sci. 132(10), 41607 (2015).

J. Zhang, N. Luo, X. Zhang, L. Xu, J. Wu, J. Yu, J. He, and J. Zhang, All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain. Chem. Eng. 4(8), 4417-4423 (2016).

C. Ye, S. T. Malak, K. Hu, W. Wu, and V. V. Tsukruk, Cellulose nanocrystal microcapsules as tunable cages for nano-and microparticles. Acs Nano, 9(11), 10887-10895 (2015).

T. Nishino, and T. Peijs, All-cellulose composites, HANDBOOK OF GREEN MATERIALS: 2 Bionanocomposites: processing, characterization and properties, 201-216: World Scientific, 2014.

H. Liu, D. Liu, F. Yao, and Q. Wu, Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol. 101(14), 5685-5692 (2010).

S. Tanpichai, F. Quero, M. Nogi, H. Yano, R. J. Young, T. Lindström, W. W. Sampson, and S. J. Eichhorn, Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5), 1340-1349 (2012).

B. Thomas, M. C. Raj, J. Joy, A. Moores, G. L. Drisko, and C. Sanchez, Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118(24), 11575-11625 (2018).

D. Miyashiro, R. Hamano, and K. Umemura, A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10(2), 186 (2020).

S. Kamel, and T. A Khattab, Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors 10(6), 67 (2020).

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 93, 2-25 (2016).

Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519-1542 (2014).

M. J. John, and S. Thomas, Biofibres and biocomposites. Carbohyd. Polym. 71(3) 343-364 (2008).

P. B. Filson, B. E. Dawson-Andoh, and D. Schwegler-Berry, Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11(11), 1808-1814 (2009).

I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz, A. Fall, L. Bergström, and R. Mezzenga, Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6(1), 1-11 (2015).

L. Petersson, I. Kvien, and K. Oksman, Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67(11-12), 2535- 2544 (2007).

S. Shafiei-Sabet, W. Y. Hamad, and S. G. Hatzikiriakos, Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49), 17124-17133 (2012).

E. E. Ureña-Benavides, G. Ao, V. A. Davis, and C. L. Kitchens, Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22), 8990-8998 (2011).

L. Malucelli, L. G. Lacerda, M. Dziedzic, and M. A. da Silva Carvalho Filho, Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research. Rev. Environ. Sci. Bio. 16(1), 131-145 (2017).

R. Marchessault, F. Morehead, and N. Walter, Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686), 632-633 (1959).

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka‐Petesic, The self‐assembly of cellulose nanocrystals: Hierarchical design of visual appearance. Adv. Mater. 30(19), 1704477 (2018).

J.-F. Revol, H. Bradford, J. Giasson, R. Marchessault, and D. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14(3), 170-172 (1992).

A. Dufresne, Nanocellulose: a new ageless bionanomaterial. Mater. Today 16(6), 220-227 (2013).

I. Sakurada, Y. Nukushina, and T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57(165), 651-660 (1962).

S. Ahola, M. Österberg, and J. Laine, Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2), 303-314 (2008).

M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6), 1579-1585 (2008).

K. Abe, S. Iwamoto, and H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10), 3276-3278 (2007).

P. Li, J. A. Sirviö, A. Haapala, and H. Liimatainen, Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl. Mater. Inter. 9(3), 2846-2855 (2017).

M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, and O. Ikkala, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6), 1934-1941 (2007).

A. Alemdar, and M. Sain, Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technol. 99(6), 1664-1671 (2008).

M. L. Hassan, A. P. Mathew, E. A. Hassan, N. A. El-Wakil, and K. Oksman, Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci.Technol. 46(1), 193- 205 (2012).

S. Janardhnan, and M. M. Sain, Isolation of cellulose microfibrils–an enzymatic approach. Bioresources 1(2), 176-188, (2006).

G. Tonoli, E. Teixeira, A. Corrêa, J. Marconcini, L. Caixeta, M. Pereira-da-Silva, and L. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohyd. Polym. 89(1), 80-88 (2012).

J. Desmaisons, E. Boutonnet, M. Rueff, A. Dufresne, and J. Bras, A new quality index for benchmarking of different cellulose nanofibrils. Carbohyd. Polym. 174, 318-329 (2017).

M. Hassanzadeh, R. Sabo, A. Rudie, R. Reiner, R. Gleisner, and G. S. Oporto, Nanofibrillated cellulose from Appalachian hardwoods logging residues as template for antimicrobial copper. J. Nanomater. 2017, 2102987 (2017).

P. Jacek, F. Dourado, M. Gama, and S. Bielecki, Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 12(4), 633-649 (2019).

H. El-Saied, A. H. Basta, and R. H. Gobran, Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym.-Plast. Technol. 43(3), 797-820 (2004).

A. Bodin, H. Bäckdahl, H. Fink, L. Gustafsson, B. Risberg, and P. Gatenholm, Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol. Bioeng. 97(2) 425-434 (2007).

H. Bäckdahl, B. Risberg, and P. Gatenholm, Observations on bacterial cellulose tube formation for application as vascular graft. Mater. Sci. Eng. C 31(1), 14-21 (2011).

J. Tang, X. Li, L. Bao, L. Chen, and F. F. Hong, Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J. Chem. Technol. Biotechnol. 92(6) 1218-1228 (2017).

M. Iguchi, S. Yamanaka, and A. Budhiono, Bacterial cellulose—a masterpiece of nature's arts. J. Mater. Sci. 35(2), 261-270 (2000).

W. Czaja, and D. Romanovicz, Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3), 403-411 (2004).

D. Klemm, D. Schumann, F. Kramer, N. Heßler, M. Hornung, H.-P. Schmauder, and S. Marsch, Nanocelluloses as innovative polymers in research and application. Polysaccharides ii 205, 49-96 (2006).

L. Wang, C. Schütz, G. Salazar-Alvarez, and M.-M. Titirici, Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. Rsc Adv. 4(34), 17549-17554 (2014).

S. L. Arias, A. R. Shetty, A. Senpan, M. Echeverry-Rendón, L. M. Reece, and J. P. Allain, Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. JoVE-J. Vis. Exp. 111, e52951 (2016).

R. T. Olsson, M. A. Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L. A. Berglund, O. Ikkala, J. Nogues, and U. W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5(8), 584-588 (2010).

C. Wiegand, S. Moritz, N. Hessler, D. Kralisch, F. Wesarg, F. A. Müller, D. Fischer, and U.- C. Hipler, Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci-Mater. M. 26(10), 1-14 (2015).

W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1), 1-12 (2007).

W. Wan, J. Hutter, L. Milton, and G. Guhados, Bacterial cellulose and its nanocomposites for biomedical applications. ACS Publications, 2006.

J. Wang, Y. Zhu, and J. Du, Bacterial cellulose: a natural nanomaterial for biomedical applications. J. Mech. Med. Biol. 11(2), 285-306 (2011).

A. Stanisławska, Bacterial Nanocellulose as a Microbiological Derived Nanomaterial. Adv. Mater.Sci. 16(4), 45-57 (2016).

C. J. Grande, F. G. Torres, C. M. Gomez, O. P. Troncoso, J. Canet-Ferrer, and J. Martínez- Pastor, Development of self-assembled bacterial cellulose–starch nanocomposites. Mater. Sci. Eng. C 29(4) 1098-1104 (2009).

H. K. Uzyol, and M. T. Saçan, Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ. Sci. Pollut. R. 24(12), 11154-11162 (2017).

P. Gatenholm, and D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208-213 (2010).

D. Trache, A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, and M. H. Hussin, Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020).

S. Nandi, and P. Guha, A review on preparation and properties of cellulose nanocrystal- incorporated natural biopolymer. J. Packaging Technol. Res. 2(2), 149-166 (2018).

H. Xie, H. Du, X. Yang, and C. Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci 2018, 7923068 (2018).

H. Kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne, Handbook of nanocellulose and cellulose nanocomposites, 2 volume set: John Wiley & Sons, 2017.

A. Sumboja, J. Liu, W. G. Zheng, Y. Zong, H. Zhang, and Z. Liu, Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47(15), 5919-5945 (2018).

A. Dufresne, Nanocellulose: from nature to high performance tailored materials: Walter de Gruyter GmbH & Co KG, 2017.

M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, and R. Davoodi, Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2), 935-969 (2015).

G. R. Bourret, P. J. Goulet, and R. B. Lennox, Synthesis of porous metallic monoliths via chemical reduction of Au (I) and Ag (I) nanostructured sheets. Chem. Mater. 23(22), 4954- 4959 (2011).

H. You, S. Yang, B. Ding, and H. Yang, Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42(7), 2880-2904 (2013).

W. Yu, M. D. Porosoff, and J. G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112(11), 5780-5817 (2012).

Z. Peng, and H. Yang, Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano toda 4(2), 143-164 (2009).

Y. Liu, J. Goebl, and Y. Yin, Themed issue: Chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2610-2653 (2013).

S. Yang, and X. Luo, Mesoporous nano/micro noble metal particles: synthesis and applications. Nanoscale 6(9), 4438-4457 (2014).

C. S. Kumar, Nanomaterials for the life sciences: WILEY-VCH, 2009.

H. Chanzy, B. Henrissat, and R. Vuong, Colloidal gold labelling of l, 4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 172(2), 193-197 (1984).

E. Lam, K. B. Male, J. H. Chong, A. C. Leung, and J. H. Luong, Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30(5), 283-290 (2012).

B. R. Evans, H. M. O'Neill, V. P. Malyvanh, I. Lee, and J. Woodward, Palladium-bacterial cellulose membranes for fuel cells. Biosens. Bioelectron. 18(7), 917-923 (2003).

M. Kaushik, and A. Moores, Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18(3), 622-637 (2016).

J. Van Rie, and W. Thielemans, Cellulose–gold nanoparticle hybrid materials. Nanoscale 9(25), 8525-8554 (2017).

N. Jirakittiwut, N. Panyain, T. Nuanyai, T. Vilaivan, and T. Praneenararat, Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor. RSC Adv. 5(31), 24110-24114 (2015).

J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, and H. Karimi- Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid. Interf. Sci. 566, 463-472 (2020).

M. H. M. Zaid, J. Abdullah, N. A. Yusof, H. Wasoh, Y. Sulaiman, M. F. M. Noh, and R. Issa, Reduced graphene oxide/tempo nanocellulose nanohybrid-based electrochemical biosensor for the determination of mycobacterium tuberculosis. J. Sensors. 2020, 4051474 (2020).

M. Moccia, V. Caratelli, S. Cinti, B. Pede, C. Avitabile, M. Saviano, A. L. Imbriani, D. Moscone, and F. Arduini, Based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. Biosens. Bioelectron. 165, 112371 (2020).

X. Sun, H. Wang, Y. Jian, F. Lan, L. Zhang, H. Liu, S. Ge, and J. Yu, Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens. Bioelectron. 105, 218-225 (2018).

H. Lin, X. Wang, J. Wu, H. Li, and F. Li, Equipment-free and visualized biosensor for transcription factor rapid assay based on dopamine-functionalized cellulose paper. J. Mater. Chem. B. 7(36), 5461-5464, 2019.

K. Mahato, and P. Chandra, based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens. Bioelectron. 128, 9- 16 (2019).

X. Sun, Y. Jian, H. Wang, S. Ge, M. Yan, and J. Yu, Ultrasensitive microfluidic paper-based

electrochemical biosensor based on molecularly imprinted film and boronate affinity sandwich assay for glycoprotein detection. ACS Appl. Mater. Inter. 11(17), 16198-16206 (2019).

R. S. Tabatabaee, H. Golmohammadi, and S. H. Ahmadi, Easy diagnosis of jaundice: a smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS sensors 4(4), 1063-1071 (2019).

C. Adrover-Jaume, A. Alba-Patiño, A. Clemente, G. Santopolo, A. Vaquer, S. M. Russell, E. Barón, M. D. M. G. Del Campo, J. M. Ferrer, and M. Berman-Riu, Paper biosensors for detecting elevated IL-6 levels in blood and respiratory samples from COVID-19 patients. Sensor. Actuat. B-Chem. 330, 129333 (2021).

B. Demirbakan, and M. K. Sezgintürk, An impedimetric biosensor system based on disposable graphite paper electrodes: Detection of ST2 as a potential biomarker for cardiovascular disease in human serum. Anal. Chim. Acta 1144, 43-52 (2021).

X. Weng, S. R. Ahmed, and S. Neethirajan, A nanocomposite-based biosensor for bovine haptoglobin on a 3D paper-based analytical device. Sensor. Actuat. B-chem. 265, 242-248 (2018).

R. B. Parker, and J. J. Kohler, Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem. Biol. 5(1), 35-46 (2010).

A. Roda, E. Michelini, M. Zangheri, M. Di Fusco, D. Calabria, and P. Simoni, Smartphone- based biosensors: A critical review and perspectives. Trac-trend. Anal. Chem. 79, 317-325 (2016).

Z. Ling, F. Xu, J. V. Edwards, N. T. Prevost, S. Nam, B. D. Condon, and A. D. French, Nanocellulose as a colorimetric biosensor for effective and facile detection of human neutrophil elastase. Carbohyd.Polym. 216, 360-368 (2019).

M. Adler, R. E. Sweeney, T. A. Hamilton, O. Lockridge, E. G. Duysen, A. L. Purcell, and S. S. Deshpande, Role of acetylcholinesterase on the structure and function of cholinergic synapses: insights gained from studies on knockout mice. Cell. Mol. Neurobiol. 31(6), 909- 920 (2011).

L. Wang, W. Guo, H. Zhu, H. He, and S. Wang, Preparation and properties of a dual-function cellulose nanofiber-based bionic biosensor for detecting silver ions and acetylcholinesterase. J. Hazard. Mater. 403, 123921 (2021).

F. Derikvand, D. T. Yin, R. Barrett, and H. Brumer, Cellulose-based biosensors for esterase

detection. Anal. Chem. 88(6), 2989-2993 (2016).

V. Incani, C. Danumah, and Y. Boluk, Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 20(1), 191-200 (2013).

A. J Ruiz-Sanchez, M. I Montanez, C. Mayorga, M. J Torres, N. S Kehr, Y. Vida, D. Collado, F. Najera, L. De Cola, and E. Perez-Inestrosa, Dendrimer-modified solid supports: nanostructured materials with potential drug allergy diagnostic applications. Curr. Med. Chem. 19(29), 4942-4954 (2012).

L. C. Clark Jr, and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY. Acad. Sci. 102(1) 29-45 (1962).

Y. H. Kim, S. Park, K. Won, H. J. Kim, and S. H. Lee, Bacterial cellulose–carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. J. Chem. Technol. Biotechnol. 88(6) 1067-1070 (2013).

J. V. Edwards, N. T. Prevost, B. Condon, A. French, and Q. Wu, Immobilization of lysozyme- cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations. Cellulose 19(2), 495-506 (2012).

B. Thallinger, E. N. Prasetyo, G. S. Nyanhongo, and G. M. Guebitz, Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 8(1), 97-109 (2013).

R. Kargl, T. Mohan, S. Köstler, S. Spirk, A. Doliška, K. Stana‐Kleinschek, and V. Ribitsch, Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv. Funct. Mater. 23(3), 308-315 (2013).

M. Li, Y. Qi, Y. Ding, Q. Zhao, J. Fei, and J. Zhou, Electrochemical sensing platform based on the quaternized cellulose nanoparticles/acetylene black/enzymes composite film. Sensor. Actuat. B-Chem. 168, 329-335 (2012).

Downloads

Published

22-08-2022

How to Cite

Hashem, A., Ibrahim Khalil, Mohammad Al Mamun, Md. Shalauddin, M. A. Motalib Hossain, Ab Rahman, . M., Simarani, K. ., & Johan, M. R. . (2022). Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: A Review. Malaysian NANO-An International Journal, 2(1), 15–45. https://doi.org/10.22452/mnij.vol2no1.2